Spaces:
Runtime error
Runtime error
Commit
·
02c225a
1
Parent(s):
a5e6fcf
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,6 +6,10 @@ import os
|
|
| 6 |
import numpy as np
|
| 7 |
from PIL import Image
|
| 8 |
import zipfile
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
with zipfile.ZipFile("examples.zip","r") as zip_ref:
|
| 11 |
zip_ref.extractall(".")
|
|
@@ -25,7 +29,7 @@ model = InceptionResnetV1(
|
|
| 25 |
device=DEVICE
|
| 26 |
)
|
| 27 |
|
| 28 |
-
checkpoint = torch.load("resnetinceptionv1_epoch_32.pth"
|
| 29 |
model.load_state_dict(checkpoint['model_state_dict'])
|
| 30 |
model.to(DEVICE)
|
| 31 |
model.eval()
|
|
@@ -52,11 +56,24 @@ def predict(input_image:Image.Image, true_label:str):
|
|
| 52 |
face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False)
|
| 53 |
|
| 54 |
# convert the face into a numpy array to be able to plot it
|
| 55 |
-
|
|
|
|
| 56 |
|
| 57 |
face = face.to(DEVICE)
|
| 58 |
face = face.to(torch.float32)
|
| 59 |
face = face / 255.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
with torch.no_grad():
|
| 61 |
output = torch.sigmoid(model(face).squeeze(0))
|
| 62 |
prediction = "real" if output.item() < 0.5 else "fake"
|
|
@@ -68,7 +85,7 @@ def predict(input_image:Image.Image, true_label:str):
|
|
| 68 |
'real': real_prediction,
|
| 69 |
'fake': fake_prediction
|
| 70 |
}
|
| 71 |
-
return confidences, true_label,
|
| 72 |
|
| 73 |
interface = gr.Interface(
|
| 74 |
fn=predict,
|
|
@@ -79,7 +96,7 @@ interface = gr.Interface(
|
|
| 79 |
outputs=[
|
| 80 |
gr.outputs.Label(label="Class"),
|
| 81 |
"text",
|
| 82 |
-
gr.outputs.Image(label="Face")
|
| 83 |
],
|
| 84 |
examples=[[examples[i]["path"], examples[i]["label"]] for i in range(10)]
|
| 85 |
).launch()
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
from PIL import Image
|
| 8 |
import zipfile
|
| 9 |
+
import cv2
|
| 10 |
+
from pytorch_grad_cam import GradCAM
|
| 11 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
| 12 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
| 13 |
|
| 14 |
with zipfile.ZipFile("examples.zip","r") as zip_ref:
|
| 15 |
zip_ref.extractall(".")
|
|
|
|
| 29 |
device=DEVICE
|
| 30 |
)
|
| 31 |
|
| 32 |
+
checkpoint = torch.load("resnetinceptionv1_epoch_32.pth")
|
| 33 |
model.load_state_dict(checkpoint['model_state_dict'])
|
| 34 |
model.to(DEVICE)
|
| 35 |
model.eval()
|
|
|
|
| 56 |
face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False)
|
| 57 |
|
| 58 |
# convert the face into a numpy array to be able to plot it
|
| 59 |
+
prev_face = face.squeeze(0).permute(1, 2, 0).cpu().detach().int().numpy()
|
| 60 |
+
prev_face = prev_face.astype('uint8')
|
| 61 |
|
| 62 |
face = face.to(DEVICE)
|
| 63 |
face = face.to(torch.float32)
|
| 64 |
face = face / 255.0
|
| 65 |
+
face_image_to_plot = face.squeeze(0).permute(1, 2, 0).cpu().detach().int().numpy()
|
| 66 |
+
|
| 67 |
+
target_layers=[model.block8.branch1[-1]]
|
| 68 |
+
use_cuda = True if torch.cuda.is_available() else False
|
| 69 |
+
cam = GradCAM(model=model, target_layers=target_layers, use_cuda=use_cuda)
|
| 70 |
+
targets = [ClassifierOutputTarget(0)]
|
| 71 |
+
|
| 72 |
+
grayscale_cam = cam(input_tensor=face, targets=targets, eigen_smooth=True)
|
| 73 |
+
grayscale_cam = grayscale_cam[0, :]
|
| 74 |
+
visualization = show_cam_on_image(face_image_to_plot, grayscale_cam, use_rgb=True)
|
| 75 |
+
face_with_mask = cv2.addWeighted(prev_face, 1, visualization, 0.5, 0)
|
| 76 |
+
|
| 77 |
with torch.no_grad():
|
| 78 |
output = torch.sigmoid(model(face).squeeze(0))
|
| 79 |
prediction = "real" if output.item() < 0.5 else "fake"
|
|
|
|
| 85 |
'real': real_prediction,
|
| 86 |
'fake': fake_prediction
|
| 87 |
}
|
| 88 |
+
return confidences, true_label, face_with_mask
|
| 89 |
|
| 90 |
interface = gr.Interface(
|
| 91 |
fn=predict,
|
|
|
|
| 96 |
outputs=[
|
| 97 |
gr.outputs.Label(label="Class"),
|
| 98 |
"text",
|
| 99 |
+
gr.outputs.Image(label="Face with Explainability")
|
| 100 |
],
|
| 101 |
examples=[[examples[i]["path"], examples[i]["label"]] for i in range(10)]
|
| 102 |
).launch()
|