Spaces:
Runtime error
Runtime error
File size: 2,449 Bytes
daf1a30 2268fdb daf1a30 540c766 7a74ade daf1a30 2268fdb daf1a30 132fa59 daf1a30 c7db18a daf1a30 c7db18a 2268fdb daf1a30 c7db18a daf1a30 b9806d6 daf1a30 d9ee424 daf1a30 cdb9404 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import re
import gradio as gr
from dataclasses import dataclass
from prettytable import PrettyTable
import logging
from pytorch_ie.annotations import LabeledSpan, BinaryRelation
from pytorch_ie.auto import AutoPipeline
from pytorch_ie.core import AnnotationList, annotation_field
from pytorch_ie.documents import TextDocument
import transformer_re_text_classification2
from typing import List
logger = logging.getLogger(__name__)
@dataclass
class ExampleDocument(TextDocument):
entities: AnnotationList[LabeledSpan] = annotation_field(target="text")
relations: AnnotationList[BinaryRelation] = annotation_field(target="entities")
ner_model_name_or_path = "pie/example-ner-spanclf-conll03"
re_model_name_or_path = "DFKI-SLT/relation_classification_tacred_revisited"
ner_pipeline = AutoPipeline.from_pretrained(ner_model_name_or_path, device=-1, num_workers=0)
re_pipeline = AutoPipeline.from_pretrained(re_model_name_or_path, device=-1, num_workers=0)
ner_tag_mapping = {
'ORG': 'ORGANIZATION',
'PER': 'PERSON',
'LOC': 'LOCATION'
}
def predict(text):
document = ExampleDocument(text)
ner_pipeline(document)
while len(document.entities.predictions) > 0:
entity = document.entities.predictions.pop(0)
if entity.label in ner_tag_mapping:
entity = LabeledSpan(start=entity.start, end=entity.end, label=ner_tag_mapping[entity.label],
score=entity.score)
if entity.label in re_pipeline.taskmodule.entity_labels:
document.entities.append(entity)
logger.warning(f"detected entity: {entity} (added)")
else:
logger.warning(f"detected entity: {entity} (NOT added)")
re_pipeline(document)
t = PrettyTable()
t.field_names = ["head", "tail", "relation"]
t.align = "l"
for relation in document.relations.predictions:
t.add_row([str(relation.head), str(relation.tail), relation.label])
html = t.get_html_string(format=True)
html = (
"<div style='max-width:100%; max-height:360px; overflow:auto'>"
+ html
+ "</div>"
)
return html
iface = gr.Interface(
fn=predict,
inputs=gr.Textbox(
lines=5,
placeholder="There is still some uncertainty that Musk - also chief executive of electric car maker Tesla and rocket company SpaceX - will pull off his planned buyout.",
),
outputs="html",
)
iface.launch() |