Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,49 @@
|
|
1 |
import requests
|
2 |
from bs4 import BeautifulSoup
|
3 |
-
import fitz # PyMuPDF
|
4 |
import os
|
5 |
import openai
|
6 |
import re
|
7 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def download_paper(paper_url):
|
10 |
-
"""
|
11 |
response = requests.get(paper_url)
|
12 |
temp_pdf_path = "temp_paper.pdf"
|
13 |
with open(temp_pdf_path, 'wb') as f:
|
@@ -15,50 +51,19 @@ def download_paper(paper_url):
|
|
15 |
return temp_pdf_path
|
16 |
|
17 |
def extract_text_from_pdf(pdf_path):
|
18 |
-
"""PDF
|
19 |
doc = fitz.open(pdf_path)
|
20 |
text = ""
|
21 |
for page in doc:
|
22 |
text += page.get_text()
|
23 |
return text
|
24 |
|
25 |
-
def check_and_read_summary(paper_id):
|
26 |
-
"""指定した論文IDの要約が既に存在するか確認し、存在する場合はその内容を返す。"""
|
27 |
-
summary_path = os.path.join("summaries", f"{paper_id}.txt")
|
28 |
-
if os.path.exists(summary_path):
|
29 |
-
with open(summary_path, 'r', encoding='utf-8') as file:
|
30 |
-
return file.read()
|
31 |
-
else:
|
32 |
-
return None
|
33 |
-
|
34 |
-
def save_summary(paper_id, summary):
|
35 |
-
"""指定した論文IDの要約をファイルに保存する。"""
|
36 |
-
os.makedirs('summaries', exist_ok=True)
|
37 |
-
summary_path = os.path.join("summaries", f"{paper_id}.txt")
|
38 |
-
with open(summary_path, 'w', encoding='utf-8') as file:
|
39 |
-
file.write(summary)
|
40 |
-
|
41 |
-
def summarize_paper(paper_id):
|
42 |
-
"""論文IDを基に論文の内容を日本語で要約する。"""
|
43 |
-
existing_summary = check_and_read_summary(paper_id)
|
44 |
-
if existing_summary is not None:
|
45 |
-
return existing_summary, 0 # トークン使用量を0として返す
|
46 |
-
|
47 |
-
paper_url = f"https://arxiv.org/pdf/{paper_id}.pdf"
|
48 |
-
pdf_path = download_paper(paper_url)
|
49 |
-
text = extract_text_from_pdf(pdf_path)
|
50 |
-
summary, tokens_used = summarize_text_with_chat(text)
|
51 |
-
os.remove(pdf_path) # 一時ファイルを削除
|
52 |
-
|
53 |
-
save_summary(paper_id, summary) # 新しい要約を保存
|
54 |
-
return summary, tokens_used
|
55 |
-
|
56 |
def summarize_text_with_chat(text, max_length=10000):
|
57 |
-
"""
|
58 |
-
openai.api_key = os.getenv('
|
59 |
trimmed_text = text[:max_length]
|
60 |
-
response = openai.
|
61 |
-
model="gpt-
|
62 |
messages=[
|
63 |
{"role": "system", "content": "次の文書を要約してください。必ず'## タイトル', '## 要約', '## 専門用語解説'を記載してください。"},
|
64 |
{"role": "user", "content": trimmed_text}
|
@@ -66,15 +71,13 @@ def summarize_text_with_chat(text, max_length=10000):
|
|
66 |
temperature=0.7,
|
67 |
max_tokens=1000
|
68 |
)
|
69 |
-
summary_text = response.choices[0].message
|
70 |
-
|
71 |
-
return summary_text, total_token
|
72 |
|
73 |
def fetch_paper_links(url):
|
74 |
-
"""指定したURL
|
75 |
response = requests.get(url)
|
76 |
soup = BeautifulSoup(response.text, 'html.parser')
|
77 |
-
# パターンの開始(^)と終了($)を指定して、完全一致を検出
|
78 |
pattern = re.compile(r'^/papers/\d+\.\d+$')
|
79 |
links = []
|
80 |
for a in soup.find_all('a', href=True):
|
@@ -83,33 +86,37 @@ def fetch_paper_links(url):
|
|
83 |
links.append(href)
|
84 |
return links
|
85 |
|
86 |
-
def
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
|
|
|
|
|
92 |
summaries = []
|
|
|
|
|
93 |
|
94 |
for paper_id in paper_ids:
|
95 |
-
|
96 |
-
|
97 |
-
summary, tokens_used = summarize_paper(paper_id)
|
98 |
-
total_tokens_used += tokens_used
|
99 |
-
paper_id_url = f"https://arxiv.org/pdf/{paper_id}.pdf"
|
100 |
-
summary_info += f'論文: {paper_id_url}\n{summary}\n'
|
101 |
-
except Exception as e:
|
102 |
-
summary_info += f"Error processing paper ID {paper_id}: {e}\n"
|
103 |
-
|
104 |
-
summaries.append(summary_info)
|
105 |
|
106 |
-
summaries_markdown = "\n---\n".join(summaries)
|
107 |
-
return summaries_markdown
|
108 |
|
109 |
-
# Gradioインターフェースの設定
|
110 |
iface = gr.Interface(
|
111 |
fn=gradio_interface,
|
112 |
-
inputs=[],
|
113 |
outputs=gr.Markdown(),
|
114 |
title="論文要約ツール",
|
115 |
description="[Daily Papers](https://huggingface.co/papers)に掲載された本日の論文を取得し、日本語で要約します。"
|
|
|
1 |
import requests
|
2 |
from bs4 import BeautifulSoup
|
3 |
+
import fitz # pip install PyMuPDF
|
4 |
import os
|
5 |
import openai
|
6 |
import re
|
7 |
import gradio as gr
|
8 |
+
from google.oauth2.credentials import Credentials
|
9 |
+
from googleapiclient.discovery import build
|
10 |
+
from googleapiclient.http import MediaIoBaseUpload, MediaIoBaseDownload
|
11 |
+
import io
|
12 |
+
import json
|
13 |
+
|
14 |
+
def google_drive_authenticate():
|
15 |
+
"""Google Driveの認証情報を読み込んでサービスオブジェクトを返す。"""
|
16 |
+
credentials_info = json.loads(os.getenv('GOOGLE_CREDENTIALS'))
|
17 |
+
credentials = Credentials.from_authorized_user_info(credentials_info)
|
18 |
+
service = build('drive', 'v3', credentials=credentials)
|
19 |
+
return service
|
20 |
+
|
21 |
+
def save_to_google_drive(service, folder_id, filename, content):
|
22 |
+
"""Google Driveにファイルを保存。"""
|
23 |
+
file_metadata = {'name': filename, 'parents': [folder_id]}
|
24 |
+
media = MediaIoBaseUpload(io.BytesIO(content.encode()), mimetype='text/plain')
|
25 |
+
file = service.files().create(body=file_metadata, media_body=media, fields='id').execute()
|
26 |
+
return file.get('id')
|
27 |
+
|
28 |
+
def find_in_google_drive(service, folder_id, paper_id):
|
29 |
+
"""Google Driveでファイルを検索し、内容を返す。"""
|
30 |
+
query = f"parents='{folder_id}' and name contains '{paper_id}' and trashed=false"
|
31 |
+
response = service.files().list(q=query, spaces='drive', fields='files(id, name)').execute()
|
32 |
+
if not response.get('files'):
|
33 |
+
return None
|
34 |
+
file_id = response.get('files')[0].get('id')
|
35 |
+
request = service.files().get_media(fileId=file_id)
|
36 |
+
fh = io.BytesIO()
|
37 |
+
downloader = MediaIoBaseDownload(fh, request)
|
38 |
+
done = False
|
39 |
+
while done is False:
|
40 |
+
_, done = downloader.next_chunk()
|
41 |
+
fh.seek(0)
|
42 |
+
content = fh.read().decode('utf-8')
|
43 |
+
return content
|
44 |
|
45 |
def download_paper(paper_url):
|
46 |
+
"""論文PDFをダウンロードして保存。"""
|
47 |
response = requests.get(paper_url)
|
48 |
temp_pdf_path = "temp_paper.pdf"
|
49 |
with open(temp_pdf_path, 'wb') as f:
|
|
|
51 |
return temp_pdf_path
|
52 |
|
53 |
def extract_text_from_pdf(pdf_path):
|
54 |
+
"""PDFからテキストを抽出。"""
|
55 |
doc = fitz.open(pdf_path)
|
56 |
text = ""
|
57 |
for page in doc:
|
58 |
text += page.get_text()
|
59 |
return text
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
def summarize_text_with_chat(text, max_length=10000):
|
62 |
+
"""OpenAIのChat APIを使ってテキストを要約。"""
|
63 |
+
openai.api_key = os.getenv('OPENAI_API_KEY')
|
64 |
trimmed_text = text[:max_length]
|
65 |
+
response = openai.ChatCompletion.create(
|
66 |
+
model="gpt-3.5-turbo-0125",
|
67 |
messages=[
|
68 |
{"role": "system", "content": "次の文書を要約してください。必ず'## タイトル', '## 要約', '## 専門用語解説'を記載してください。"},
|
69 |
{"role": "user", "content": trimmed_text}
|
|
|
71 |
temperature=0.7,
|
72 |
max_tokens=1000
|
73 |
)
|
74 |
+
summary_text = response.choices[0].message['content']
|
75 |
+
return summary_text
|
|
|
76 |
|
77 |
def fetch_paper_links(url):
|
78 |
+
"""指定したURLから論文のリンクを抽出し、重複を排除。"""
|
79 |
response = requests.get(url)
|
80 |
soup = BeautifulSoup(response.text, 'html.parser')
|
|
|
81 |
pattern = re.compile(r'^/papers/\d+\.\d+$')
|
82 |
links = []
|
83 |
for a in soup.find_all('a', href=True):
|
|
|
86 |
links.append(href)
|
87 |
return links
|
88 |
|
89 |
+
def summarize_paper(paper_id, service, folder_id):
|
90 |
+
"""Google Driveで要約を検索または新たに生成して保存。"""
|
91 |
+
existing_summary = find_in_google_drive(service, folder_id, paper_id)
|
92 |
+
if existing_summary:
|
93 |
+
return existing_summary
|
94 |
+
paper_url = f"https://arxiv.org/pdf/{paper_id}.pdf"
|
95 |
+
pdf_path = download_paper(paper_url)
|
96 |
+
text = extract_text_from_pdf(pdf_path)
|
97 |
+
summary = summarize_text_with_chat(text)
|
98 |
+
os.remove(pdf_path)
|
99 |
+
filename = f"{paper_id}_summary.txt"
|
100 |
+
save_to_google_drive(service, folder_id, filename, summary)
|
101 |
+
return summary
|
102 |
|
103 |
+
def gradio_interface():
|
104 |
+
service = google_drive_authenticate()
|
105 |
+
folder_id = '1yOXimp4kk7eohWKGtVo-gn93M0A404TM'
|
106 |
summaries = []
|
107 |
+
paper_links = fetch_paper_links("https://huggingface.co/papers")
|
108 |
+
paper_ids = [link.split('/')[-1] for link in paper_links]
|
109 |
|
110 |
for paper_id in paper_ids:
|
111 |
+
summary = summarize_paper(paper_id, service, folder_id)
|
112 |
+
summaries.append(summary)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
+
summaries_markdown = "\n---\n".join(summaries)
|
115 |
+
return summaries_markdown
|
116 |
|
|
|
117 |
iface = gr.Interface(
|
118 |
fn=gradio_interface,
|
119 |
+
inputs=[],
|
120 |
outputs=gr.Markdown(),
|
121 |
title="論文要約ツール",
|
122 |
description="[Daily Papers](https://huggingface.co/papers)に掲載された本日の論文を取得し、日本語で要約します。"
|