Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
from datasets import load_dataset
|
6 |
+
import soundfile as sf
|
7 |
+
import torch
|
8 |
+
|
9 |
+
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
10 |
+
synthesiser = pipeline("text-to-speech", "microsoft/speecht5_tts")
|
11 |
+
|
12 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
13 |
+
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
14 |
+
|
15 |
+
def predict_step(image):
|
16 |
+
if isinstance(image, np.ndarray):
|
17 |
+
image = Image.fromarray(image)
|
18 |
+
|
19 |
+
|
20 |
+
result = image_to_text(image)
|
21 |
+
|
22 |
+
texto = result[0]['generated_text']
|
23 |
+
speech = synthesiser(texto, forward_params={"speaker_embeddings": speaker_embedding})
|
24 |
+
sf.write("speech.wav", speech["audio"], samplerate=speech["sampling_rate"])
|
25 |
+
return "speech.wav", texto
|
26 |
+
|
27 |
+
demo = gr.Interface(
|
28 |
+
fn=predict_step,
|
29 |
+
inputs="image",
|
30 |
+
outputs=["audio","textbox"],
|
31 |
+
title="Descripción de Imágenes",
|
32 |
+
description="Cargue una imagen y obtenga una descripción generada por IA."
|
33 |
+
)
|
34 |
+
|
35 |
+
demo.launch()
|