Spaces:
Sleeping
Sleeping
Delete CommentImage.py
Browse files- CommentImage.py +0 -35
CommentImage.py
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
-
from PIL import Image
|
4 |
-
import numpy as np
|
5 |
-
from datasets import load_dataset
|
6 |
-
import soundfile as sf
|
7 |
-
import torch
|
8 |
-
|
9 |
-
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
10 |
-
synthesiser = pipeline("text-to-speech", "microsoft/speecht5_tts")
|
11 |
-
|
12 |
-
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
13 |
-
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
14 |
-
|
15 |
-
def predict_step(image):
|
16 |
-
if isinstance(image, np.ndarray):
|
17 |
-
image = Image.fromarray(image)
|
18 |
-
|
19 |
-
|
20 |
-
result = image_to_text(image)
|
21 |
-
|
22 |
-
texto = result[0]['generated_text']
|
23 |
-
speech = synthesiser(texto, forward_params={"speaker_embeddings": speaker_embedding})
|
24 |
-
sf.write("speech.wav", speech["audio"], samplerate=speech["sampling_rate"])
|
25 |
-
return "speech.wav", texto
|
26 |
-
|
27 |
-
demo = gr.Interface(
|
28 |
-
fn=predict_step,
|
29 |
-
inputs="image",
|
30 |
-
outputs=["audio","textbox"],
|
31 |
-
title="Descripción de Imágenes",
|
32 |
-
description="Cargue una imagen y obtenga una descripción generada por IA."
|
33 |
-
)
|
34 |
-
|
35 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|