File size: 3,417 Bytes
adf2111
08cbfae
2d807c6
259195c
2d807c6
08cbfae
 
2d807c6
 
08cbfae
6c07df1
 
 
 
 
 
 
 
 
2d807c6
 
 
08cbfae
 
 
 
2d807c6
 
08cbfae
 
 
 
 
 
6c07df1
 
 
 
08cbfae
6c07df1
7e43527
b0a8cf0
 
 
 
6c07df1
2d807c6
977a5b3
6c07df1
 
 
 
 
08cbfae
6c07df1
 
08cbfae
2d807c6
 
6c07df1
bcdae47
6c07df1
 
 
 
 
 
08cbfae
6c07df1
2d807c6
 
6a61f29
08cbfae
 
2d807c6
7e43527
 
 
08cbfae
8d9c7cb
08cbfae
6c07df1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import tensorflow as tf
import efficientnet.tfkeras as efn
from tensorflow.keras.layers import Input, GlobalAveragePooling2D, Dense
import numpy as np
import gradio as gr

# Dimensões da imagem
IMG_HEIGHT = 224
IMG_WIDTH = 224

# Função para construir o modelo de detecção de objetos
def build_object_detection_model(img_height, img_width):
    # Replace this with your object detection model architecture and weights
    # For example, you can use a model from TensorFlow Hub or any other source
    object_detection_model = None  # Load your object detection model here
    return object_detection_model

# Função para construir o modelo de classificação
def build_classification_model(img_height, img_width, n):
    inp = Input(shape=(img_height, img_width, n))
    efnet = efn.EfficientNetB0(
        input_shape=(img_height, img_width, n),
        weights='imagenet',
        include_top=False
    )
    x = efnet(inp)
    x = GlobalAveragePooling2D()(x)
    x = Dense(2, activation='softmax')(x)
    model = tf.keras.Model(inputs=inp, outputs=x)
    opt = tf.keras.optimizers.Adam(learning_rate=0.000003)
    loss = tf.keras.losses.CategoricalCrossentropy(label_smoothing=0.01)
    model.compile(optimizer=opt, loss=loss, metrics=['accuracy'])
    return model

# Load the object detection and classification models
object_detection_model = build_object_detection_model(IMG_HEIGHT, IMG_WIDTH)
classification_model = build_classification_model(IMG_HEIGHT, IMG_WIDTH, 3)
classification_model.load_weights('modelo_treinado.h5')

# Function to preprocess the image for classification
def preprocess_image(input_image):
    input_image = tf.image.resize(input_image, (IMG_HEIGHT, IMG_WIDTH))
    input_image = input_image / 255.0
    return input_image

# Function to perform object detection and classification
def predict_image(input_image):
    # Realize o pré-processamento na imagem de entrada
    input_image_classification = preprocess_image(input_image)

    # Faça uma previsão usando o modelo de classificação carregado
    input_image_classification = tf.expand_dims(input_image_classification, axis=0)
    classification_prediction = classification_model.predict(input_image_classification)

    # Perform object detection here using the object_detection_model
    # Replace this with your object detection logic to get bounding box coordinates

    # A saída será uma matriz de previsões (no caso de classificação de duas classes, será algo como [[probabilidade_classe_0, probabilidade_classe_1]])
    # Adicione lógica para interpretar o resultado e formatá-lo para exibição

    class_names = ["Normal", "Cataract"]
    predicted_class = class_names[np.argmax(classification_prediction)]
    probability = classification_prediction[0][np.argmax(classification_prediction)]

    # You can format the result with object detection bounding box and label here
    # For example:
    # formatted_text = f"Predicted Class: {predicted_class}\nProbability: {probability:.2%}\nObject Detection: {bounding_box_coordinates}"

    # Return the formatted result
    formatted_text = f"Predicted Class: {predicted_class}\nProbability: {probability:.2%}"
    return formatted_text

# Crie uma interface Gradio para fazer previsões
iface = gr.Interface(
    fn=predict_image,
    inputs="image",
    outputs="text",
    interpretation="default"
)

# Execute a interface Gradio
iface.launch()