DHEIVER's picture
Update app.py
32e9f67
raw
history blame
1.03 kB
import gradio as gr
import tensorflow as tf
from tensorflow.keras.models import load_model
from PIL import Image
import numpy as np
# Load the TensorFlow model
tf_model_path = 'modelo_treinado.h5' # Update with the path to your TensorFlow model
tf_model = load_model(tf_model_path)
# Class labels for the model
class_labels = ["Normal", "Cataract"]
# Define a function for prediction
def predict(image):
# Preprocess the input image (resize and normalize)
image = image.resize((224, 224)) # Adjust the size as needed
image = np.array(image) / 255.0 # Normalize pixel values
image = np.expand_dims(image, axis=0) # Add batch dimension
# Make a prediction using the loaded TensorFlow model
predictions = tf_model.predict(image)
# Get the predicted class label
predicted_label = class_labels[np.argmax(predictions)]
return predicted_label
# Create the Gradio interface
gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=2),
).launch()