DHEIVER's picture
Update app.py
671c67e
raw
history blame
3.37 kB
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
import cv2
import datetime
from tensorflow.keras import backend as K
# Define the custom FixedDropout layer
class FixedDropout(tf.keras.layers.Layer):
def __init__(self, rate, noise_shape=None, seed=None, **kwargs):
super(FixedDropout, self).__init__(**kwargs)
self.rate = rate
self.noise_shape = noise_shape # Include the noise_shape argument
self.seed = seed # Include the seed argument
def call(self, inputs, training=None):
if training is None:
training = K.learning_phase()
return K.in_train_phase(K.dropout(inputs, self.rate, noise_shape=self.noise_shape, seed=self.seed), inputs, training=training)
def get_config(self):
config = super(FixedDropout, self).get_config()
config['rate'] = self.rate # Serialize the rate argument
config['noise_shape'] = self.noise_shape # Serialize the noise_shape argument
config['seed'] = self.seed # Serialize the seed argument
return config
class ImageClassifierApp:
def __init__(self, model_path):
self.model_path = model_path
self.model = self.load_model()
self.class_labels = ["Normal", "Cataract"]
def load_model(self):
# Load the trained TensorFlow model
with tf.keras.utils.custom_object_scope({'FixedDropout': FixedDropout}):
model = tf.keras.models.load_model(self.model_path)
return model
def classify_image(self, input_image):
input_image = tf.image.resize(input_image, (192, 256))
input_image = (input_image / 255.0)
input_image = np.expand_dims(input_image, axis=0)
current_time = datetime.datetime.now()
prediction = self.model.predict(input_image)
class_index = np.argmax(prediction)
predicted_class = self.class_labels[class_index]
output_image = (input_image[0] * 255).astype('uint8')
output_image = cv2.copyMakeBorder(output_image, 0, 50, 0, 0, cv2.BORDER_CONSTANT, value=(255, 255, 255))
label_background = np.ones((50, output_image.shape[1], 3), dtype=np.uint8) * 255
output_image[-50:] = label_background
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.4
cv2.putText(output_image, f"Analysis Time: {current_time.strftime('%Y-%m-%d %H:%M:%S')}", (10, output_image.shape[0] - 30), font, font_scale, (0, 0, 0), 1)
cv2.putText(output_image, f"Predicted Class: {predicted_class}", (10, output_image.shape[0] - 10), font, font_scale, (0, 0, 0), 1)
image_height, image_width, _ = output_image.shape
box_size = 100
box_x = (image_width - box_size) // 2
box_y = (image_height - box_size) // 2
object_box_color = (255, 0, 0)
cv2.rectangle(output_image, (box_x, box_y), (box_x + box_size, box_y + box_size), object_box_color, 2)
return output_image
def run_interface(self):
input_interface = gr.Interface(
fn=self.classify_image,
inputs="image",
outputs="image",
live=True
)
input_interface.launch()
if __name__ == "__main__":
model_path = 'modelo_treinado.h5' # Replace with the path to your trained model
app = ImageClassifierApp(model_path)
app.run_interface()