DHEIVER's picture
Update app.py
8ddfbaa
raw
history blame
1.69 kB
import gradio as gr
import tensorflow as tf
import cv2
import numpy as np
# Define the custom layer 'FixedDropout'
class FixedDropout(tf.keras.layers.Layer):
def __init__(self, rate, **kwargs):
super(FixedDropout, self).__init__(**kwargs)
self.rate = rate
def call(self, inputs, training=None):
return tf.keras.layers.Dropout(self.rate)(inputs, training=training)
# Load the TensorFlow model with custom layer handling
def load_model_with_custom_objects(model_path):
with tf.keras.utils.custom_object_scope({'FixedDropout': FixedDropout}):
model = tf.keras.models.load_model(model_path)
return model
tf_model_path = 'modelo_treinado.h5' # Update with the path to your TensorFlow model
tf_model = load_model_with_custom_objects(tf_model_path)
class_labels = ["Normal", "Cataract"]
# Define a Gradio interface
def classify_image(input_image):
# Preprocess the input image
input_image = cv2.resize(input_image, (224, 224)) # Resize the image to match the model's input size
input_image = np.expand_dims(input_image, axis=0) # Add batch dimension
input_image = input_image / 255.0 # Normalize pixel values (assuming input range [0, 255])
# Make predictions using the loaded model
predictions = tf_model.predict(input_image)
class_index = np.argmax(predictions, axis=1)[0]
predicted_class = class_labels[class_index]
return predicted_class
# Create a Gradio interface
input_image = gr.inputs.Image(shape=(224, 224, 3)) # Define the input image shape
output_label = gr.outputs.Label() # Define the output label
gr.Interface(fn=classify_image, inputs=input_image, outputs=output_label).launch()