DHEIVER's picture
Update app.py
abed96a
raw
history blame
1.79 kB
import gradio as gr
import tensorflow as tf
import numpy as np
# Defina a camada personalizada FixedDropout
class FixedDropout(tf.keras.layers.Dropout):
def _get_noise_shape(self, inputs):
if self.noise_shape is None:
return self.noise_shape
symbolic_shape = tf.shape(inputs)
noise_shape = [symbolic_shape[axis] if shape is None else shape
for axis, shape in enumerate(self.noise_shape)]
return tuple(noise_shape)
# Registre a camada personalizada FixedDropout
tf.keras.utils.get_custom_objects()['FixedDropout'] = FixedDropout
# Carregue seu modelo TensorFlow treinado
model = tf.keras.models.load_model('modelo_treinado.h5')
# Defina uma função para fazer previsões
def classify_image(input_image):
# Redimensione a imagem para as dimensões corretas (192x256)
input_image = tf.image.resize(input_image, (192, 256)) # Redimensione para as dimensões esperadas
input_image = (input_image / 255.0) # Normalize para [0, 1]
input_image = np.expand_dims(input_image, axis=0) # Adicione a dimensão de lote
# Faça a previsão usando o modelo
prediction = model.predict(input_image)
# Assumindo que o modelo retorna probabilidades para duas classes, você pode retornar a classe com a maior probabilidade
class_index = np.argmax(prediction)
class_labels = ["Normal", "Cataract"] # Substitua pelas suas etiquetas de classe reais
predicted_class = class_labels[class_index]
return predicted_class
# Crie uma interface Gradio
input_interface = gr.Interface(
fn=classify_image,
inputs="image", # Especifique o tipo de entrada como "image"
outputs="text" # Especifique o tipo de saída como "text"
)
# Inicie o aplicativo Gradio
input_interface.launch()