Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,37 +1,34 @@
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
-
import
|
4 |
-
import cv2
|
5 |
import numpy as np
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
return tf.keras.layers.Dropout(0.5)(x)
|
10 |
-
|
11 |
-
# Load the TensorFlow model while registering the custom layer
|
12 |
-
custom_objects = {'fixed_dropout': fixed_dropout}
|
13 |
-
tf_model_path = 'modelo_treinado.h5' # Update with the path to your TensorFlow model
|
14 |
-
tf_model = tf.keras.models.load_model(tf_model_path, custom_objects=custom_objects)
|
15 |
|
|
|
16 |
class_labels = ["Normal", "Cataract"]
|
17 |
|
|
|
18 |
def predict(inp):
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
)
|
36 |
-
|
|
|
|
|
37 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
+
from PIL import Image
|
|
|
4 |
import numpy as np
|
5 |
|
6 |
+
# Carregar o modelo TensorFlow
|
7 |
+
model = tf.keras.models.load_model('modelo_treinado.h5')
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Definir as classes
|
10 |
class_labels = ["Normal", "Cataract"]
|
11 |
|
12 |
+
# Função de previsão
|
13 |
def predict(inp):
|
14 |
+
# Pré-processamento da imagem para adequá-la ao modelo TensorFlow
|
15 |
+
img = np.array(inp)
|
16 |
+
img = tf.image.resize(img, (224, 224))
|
17 |
+
img = img / 255.0 # Normalização, se necessário
|
18 |
+
img = tf.expand_dims(img, axis=0)
|
19 |
+
|
20 |
+
# Fazer previsão com o modelo TensorFlow
|
21 |
+
predictions = model.predict(img)
|
22 |
+
|
23 |
+
# Obter a classe com a maior probabilidade
|
24 |
+
predicted_class = class_labels[np.argmax(predictions)]
|
25 |
+
|
26 |
+
return {predicted_class: float(predictions[0, np.argmax(predictions)])}
|
27 |
+
|
28 |
+
# Criar a interface Gradio
|
29 |
+
demo = gr.Interface(fn=predict,
|
30 |
+
inputs=gr.inputs.Image(type="pil"),
|
31 |
+
outputs=gr.outputs.Label(),
|
32 |
+
)
|
33 |
+
|
34 |
demo.launch()
|