Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,19 +8,23 @@ from tensorflow.keras import backend as K
|
|
8 |
|
9 |
# Define the custom FixedDropout layer
|
10 |
class FixedDropout(tf.keras.layers.Layer):
|
11 |
-
def __init__(self, rate, **kwargs):
|
12 |
super(FixedDropout, self).__init__(**kwargs)
|
13 |
self.rate = rate
|
|
|
14 |
|
15 |
def call(self, inputs, training=None):
|
16 |
if training is None:
|
17 |
training = K.learning_phase()
|
18 |
-
return K.in_train_phase(K.dropout(inputs, self.rate), inputs, training=training)
|
19 |
|
20 |
def get_config(self):
|
21 |
config = super(FixedDropout, self).get_config()
|
|
|
|
|
22 |
return config
|
23 |
|
|
|
24 |
class ImageClassifierApp:
|
25 |
def __init__(self, model_path):
|
26 |
self.model_path = model_path
|
|
|
8 |
|
9 |
# Define the custom FixedDropout layer
|
10 |
class FixedDropout(tf.keras.layers.Layer):
|
11 |
+
def __init__(self, rate, noise_shape=None, **kwargs):
|
12 |
super(FixedDropout, self).__init__(**kwargs)
|
13 |
self.rate = rate
|
14 |
+
self.noise_shape = noise_shape # Include the noise_shape argument
|
15 |
|
16 |
def call(self, inputs, training=None):
|
17 |
if training is None:
|
18 |
training = K.learning_phase()
|
19 |
+
return K.in_train_phase(K.dropout(inputs, self.rate, noise_shape=self.noise_shape), inputs, training=training)
|
20 |
|
21 |
def get_config(self):
|
22 |
config = super(FixedDropout, self).get_config()
|
23 |
+
config['rate'] = self.rate # Serialize the rate argument
|
24 |
+
config['noise_shape'] = self.noise_shape # Serialize the noise_shape argument
|
25 |
return config
|
26 |
|
27 |
+
|
28 |
class ImageClassifierApp:
|
29 |
def __init__(self, model_path):
|
30 |
self.model_path = model_path
|