import gradio as gr import tensorflow as tf import numpy as np from PIL import Image from io import BytesIO # Load your trained model model = tf.keras.models.load_model("best_model_weights.h5") # Replace with the path to your saved model # Define the image classification function def classify_image(input_image): # Preprocess the input image input_image = Image.open(BytesIO(input_image)) input_image = input_image.resize((img_width, img_height)) input_image = np.array(input_image) / 255.0 # Normalize pixel values # Make a prediction using the model predictions = model.predict(np.expand_dims(input_image, axis=0)) # Get the class label with the highest probability class_index = np.argmax(predictions) class_prob = predictions[0][class_index] # Define class labels (you can replace these with your actual class labels) class_labels = ["Normal", "Cataract"] # Get the class label class_label = class_labels[class_index] return f"Predicted Class: {class_label} (Probability: {class_prob:.2f})" # Define the Gradio interface iface = gr.Interface( fn=classify_image, inputs=gr.inputs.Image(shape=(img_height, img_width)), outputs="text", live=True, title="Image Classifier" ) # Run the Gradio interface iface.launch()