import tensorflow as tf import efficientnet.tfkeras as efn from tensorflow.keras.layers import Input, GlobalAveragePooling2D, Dense import numpy as np import gradio as gr # Dimensões da imagem IMG_HEIGHT = 224 IMG_WIDTH = 224 # Função para construir o modelo de detecção de objetos def build_object_detection_model(img_height, img_width): # Replace this with your object detection model architecture and weights # For example, you can use a model from TensorFlow Hub or any other source object_detection_model = None # Load your object detection model here return object_detection_model # Função para construir o modelo de classificação def build_classification_model(img_height, img_width, n): inp = Input(shape=(img_height, img_width, n)) efnet = efn.EfficientNetB0( input_shape=(img_height, img_width, n), weights='imagenet', include_top=False ) x = efnet(inp) x = GlobalAveragePooling2D()(x) x = Dense(2, activation='softmax')(x) model = tf.keras.Model(inputs=inp, outputs=x) opt = tf.keras.optimizers.Adam(learning_rate=0.000003) loss = tf.keras.losses.CategoricalCrossentropy(label_smoothing=0.01) model.compile(optimizer=opt, loss=loss, metrics=['accuracy']) return model # Load the object detection and classification models object_detection_model = build_object_detection_model(IMG_HEIGHT, IMG_WIDTH) classification_model = build_classification_model(IMG_HEIGHT, IMG_WIDTH, 3) classification_model.load_weights('modelo_treinado.h5') # Function to preprocess the image for classification def preprocess_image(input_image): input_image = tf.image.resize(input_image, (IMG_HEIGHT, IMG_WIDTH)) input_image = input_image / 255.0 return input_image # Function to perform object detection and classification def predict_image(input_image): # Realize o pré-processamento na imagem de entrada input_image_classification = preprocess_image(input_image) # Faça uma previsão usando o modelo de classificação carregado input_image_classification = tf.expand_dims(input_image_classification, axis=0) classification_prediction = classification_model.predict(input_image_classification) # Perform object detection here using the object_detection_model # Replace this with your object detection logic to get bounding box coordinates # A saída será uma matriz de previsões (no caso de classificação de duas classes, será algo como [[probabilidade_classe_0, probabilidade_classe_1]]) # Adicione lógica para interpretar o resultado e formatá-lo para exibição class_names = ["Normal", "Cataract"] predicted_class = class_names[np.argmax(classification_prediction)] probability = classification_prediction[0][np.argmax(classification_prediction)] # You can format the result with object detection bounding box and label here # For example: # formatted_text = f"Predicted Class: {predicted_class}\nProbability: {probability:.2%}\nObject Detection: {bounding_box_coordinates}" # Return the formatted result formatted_text = f"Predicted Class: {predicted_class}\nProbability: {probability:.2%}" return formatted_text # Crie uma interface Gradio para fazer previsões iface = gr.Interface( fn=predict_image, inputs="image", outputs="text", interpretation="default" ) # Execute a interface Gradio iface.launch()