import gradio as gr import tensorflow as tf import cv2 import numpy as np # Define the custom layer 'FixedDropout' class FixedDropout(tf.keras.layers.Layer): def __init__(self, rate, **kwargs): super(FixedDropout, self).__init__(**kwargs) self.rate = rate def call(self, inputs, training=None): return tf.keras.backend.dropout(inputs, level=self.rate) # Load the TensorFlow model with custom layer handling def load_model_with_custom_objects(model_path): with tf.keras.utils.custom_object_scope({'FixedDropout': FixedDropout}): model = tf.keras.models.load_model(model_path) return model tf_model_path = 'modelo_treinado.h5' # Update with the path to your TensorFlow model tf_model = load_model_with_custom_objects(tf_model_path) class_labels = ["Normal", "Cataract"] # Define a Gradio interface def classify_image(input_image): # Preprocess the input image input_image = cv2.resize(input_image, (224, 224)) # Resize the image to match the model's input size input_image = np.expand_dims(input_image, axis=0) # Add batch dimension input_image = input_image / 255.0 # Normalize pixel values (assuming input range [0, 255]) # Make predictions using the loaded model predictions = tf_model.predict(input_image) class_index = np.argmax(predictions, axis=1)[0] predicted_class = class_labels[class_index] return predicted_class # Create a Gradio interface input_image = gr.inputs.Image(shape=(224, 224, 3)) # Define the input image shape output_label = gr.outputs.Label() # Define the output label gr.Interface(fn=classify_image, inputs=input_image, outputs=output_label).launch()