RAG-CHAT / app.py
DHEIVER's picture
Update app.py
b0159f0 verified
raw
history blame
17.2 kB
import gradio as gr
import os
import torch
from langchain_community.vectorstores import FAISS, Chroma
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
from langchain_community.retrievers import BM25Retriever
from langchain.retrievers import EnsembleRetriever # Try the original import (it might be in langchain.retrievers)
#from langchain.chains.query_constructor.base import AttributeInfo # Removed deprecated code
#from langchain.chains import create_query_chain # Removed deprecated code
#from langchain.retrievers.self_query.base import SelfQueryRetriever # Removed deprecated code
#from langchain.chains.query_constructor.schema import FieldInfo # Removed deprecated code
from langchain.retrievers.multi_query import MultiQueryRetriever
api_token = os.getenv("FirstToken")
# Available LLM models
list_llm = [
"meta-llama/Meta-Llama-3-8B-Instruct",
"mistralai/Mistral-7B-Instruct-v0.2",
"deepseek-ai/deepseek-llm-7b-chat"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# -----------------------------------------------------------------------------
# Document Loading and Splitting
# -----------------------------------------------------------------------------
def load_doc(list_file_path):
"""Load and split PDF documents into chunks."""
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1024,
chunk_overlap=64
)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# -----------------------------------------------------------------------------
# Vector Database Creation (ChromaDB and FAISS)
# -----------------------------------------------------------------------------
def create_chromadb(splits, persist_directory="chroma_db"):
"""Create ChromaDB vector database from document splits."""
embeddings = HuggingFaceEmbeddings()
chromadb = Chroma.from_documents(
documents=splits,
embedding=embeddings,
persist_directory=persist_directory
)
chromadb.persist() # Ensure data is written to disk
return chromadb
def create_faissdb(splits):
"""Create FAISS vector database from document splits."""
embeddings = HuggingFaceEmbeddings()
faissdb = FAISS.from_documents(splits, embeddings)
return faissdb
# -----------------------------------------------------------------------------
# BM25 Retriever
# -----------------------------------------------------------------------------
def create_bm25_retriever(splits):
"""Create BM25 retriever from document splits."""
bm25_retriever = BM25Retriever.from_documents(splits)
bm25_retriever.k = 3 # Number of documents to retrieve
return bm25_retriever
# -----------------------------------------------------------------------------
# MultiQueryRetriever
# -----------------------------------------------------------------------------
def create_multi_query_retriever(llm, vector_db, num_queries=3):
"""
Create a MultiQueryRetriever.
Args:
llm: The language model to use for query generation.
vector_db: The vector database to retrieve from.
num_queries: The number of diverse queries to generate.
Returns:
A MultiQueryRetriever instance.
"""
retriever = MultiQueryRetriever.from_llm(
llm=llm, retriever=vector_db.as_retriever(),
output_key="answer",
memory_key="chat_history",
return_messages=True,
verbose=False
)
return retriever
# -----------------------------------------------------------------------------
# Ensemble Retriever (Combine VectorDB and BM25)
# -----------------------------------------------------------------------------
def create_ensemble_retriever(vector_db, bm25_retriever):
"""Create an ensemble retriever combining ChromaDB and BM25."""
ensemble_retriever = EnsembleRetriever(
retrievers=[vector_db.as_retriever(), bm25_retriever],
weights=[0.7, 0.3] # Adjust weights as needed
)
return ensemble_retriever
# -----------------------------------------------------------------------------
# Initialize Database
# -----------------------------------------------------------------------------
def initialize_database(list_file_obj, progress=gr.Progress()):
"""Initialize the document database."""
list_file_path = [x.name for x in list_file_obj if x is not None]
doc_splits = load_doc(list_file_path)
# Create vector databases and retrievers
chromadb = create_chromadb(doc_splits)
bm25_retriever = create_bm25_retriever(doc_splits)
# Create ensemble retriever
ensemble_retriever = create_ensemble_retriever(chromadb, bm25_retriever)
return ensemble_retriever, "Database created successfully!"
# -----------------------------------------------------------------------------
# Initialize LLM Chain
# -----------------------------------------------------------------------------
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, retriever, progress=gr.Progress()):
"""Initialize the language model chain."""
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
task="text-generation"
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
return qa_chain
# -----------------------------------------------------------------------------
# Initialize LLM
# -----------------------------------------------------------------------------
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, retriever, progress=gr.Progress()):
"""Initialize the Language Model."""
llm_name = list_llm[llm_option]
print("Selected LLM model:", llm_name)
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, retriever, progress)
return qa_chain, "Analysis Assistant initialized and ready!"
# -----------------------------------------------------------------------------
# Chat History Formatting
# -----------------------------------------------------------------------------
def format_chat_history(message, chat_history):
"""Format chat history for the model."""
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
# -----------------------------------------------------------------------------
# Conversation Function
# -----------------------------------------------------------------------------
def conversation(qa_chain, message, history, lang):
"""Handle conversation and document analysis."""
# Add language instruction to the message
if lang == "pt":
message += " (Responda em PortuguΓͺs)"
else:
message += " (Respond in English)"
formatted_chat_history = format_chat_history(message, history)
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
# Remove the language instruction from the chat history
if "(Respond" in message:
message = message.split(" (Respond")[0]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
# -----------------------------------------------------------------------------
# Gradio Demo
# -----------------------------------------------------------------------------
def demo():
"""Main demo application with enhanced layout."""
theme = gr.themes.Default(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
)
# Custom CSS for advanced layout
custom_css = """
.container {background: #ffffff; padding: 1rem; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1);}
.header {text-align: center; margin-bottom: 2rem;}
.header h1 {color: #1a365d; font-size: 2.5rem; margin-bottom: 0.5rem;}
.header p {color: #4a5568; font-size: 1.2rem;}
.section {margin-bottom: 1.5rem; padding: 1rem; background: #f8fafc; border-radius: 8px;}
.control-panel {margin-bottom: 1rem;}
.chat-area {background: white; padding: 1rem; border-radius: 8px;}
"""
with gr.Blocks(theme=theme, css=custom_css) as demo:
retriever = gr.State()
qa_chain = gr.State()
language = gr.State(value="en") # State for language control
# Header
gr.HTML(
"""
<div class="header">
<h1>MetroAssist AI</h1>
<p>Expert System for Metrology Report Analysis</p>
</div>
"""
)
with gr.Row():
# Left Column - Controls
with gr.Column(scale=1):
gr.Markdown("## Document Processing")
# File Upload Section
with gr.Column(elem_classes="section"):
gr.Markdown("### πŸ“„ Upload Documents")
document = gr.Files(
label="Metrology Reports (PDF)",
file_count="multiple",
file_types=["pdf"]
)
db_btn = gr.Button("Process Documents")
db_progress = gr.Textbox(
value="Ready for documents",
label="Processing Status"
)
# Model Selection Section
with gr.Column(elem_classes="section"):
gr.Markdown("### πŸ€– Model Configuration")
llm_btn = gr.Radio(
choices=list_llm_simple,
label="Select AI Model",
value=list_llm_simple[0],
type="index"
)
# Language selection button
language_btn = gr.Radio(
choices=["English", "PortuguΓͺs"],
label="Response Language",
value="English",
type="value"
)
with gr.Accordion("Advanced Settings", open=False):
slider_temperature = gr.Slider(
minimum=0.01,
maximum=1.0,
value=0.5,
step=0.1,
label="Analysis Precision"
)
slider_maxtokens = gr.Slider(
minimum=128,
maximum=9192,
value=4096,
step=128,
label="Response Length"
)
slider_topk = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Analysis Diversity"
)
qachain_btn = gr.Button("Initialize Assistant")
llm_progress = gr.Textbox(
value="Not initialized",
label="Assistant Status"
)
# Right Column - Chat Interface
with gr.Column(scale=2):
gr.Markdown("## Interactive Analysis")
# Features Section
with gr.Row():
with gr.Column():
gr.Markdown(
"""
### πŸ“Š Capabilities
- Calibration Analysis
- Standards Compliance
- Uncertainty Evaluation
"""
)
with gr.Column():
gr.Markdown(
"""
### πŸ’‘ Best Practices
- Ask specific questions
- Include measurement context
- Specify standards
"""
)
# Chat Interface
with gr.Column(elem_classes="chat-area"):
chatbot = gr.Chatbot(
height=400,
label="Analysis Conversation"
)
with gr.Row():
msg = gr.Textbox(
placeholder="Ask about your metrology report...",
label="Query"
)
submit_btn = gr.Button("Send")
clear_btn = gr.ClearButton(
[msg, chatbot],
value="Clear"
)
# References Section
with gr.Accordion("Document References", open=False):
with gr.Row():
with gr.Column():
doc_source1 = gr.Textbox(label="Reference 1", lines=2)
source1_page = gr.Number(label="Page")
with gr.Column():
doc_source2 = gr.Textbox(label="Reference 2", lines=2)
source2_page = gr.Number(label="Page")
with gr.Column():
doc_source3 = gr.Textbox(label="Reference 3", lines=2)
source3_page = gr.Number(label="Page")
# Footer
gr.Markdown(
"""
---
### About MetroAssist AI
A specialized tool for metrology professionals, providing advanced analysis
of calibration certificates, measurement data, and technical standards compliance.
**Version 1.0** | Β© 2024 MetroAssist AI
"""
)
# Event Handlers
language_btn.change(
lambda x: "en" if x == "English" else "pt",
inputs=language_btn,
outputs=language
)
db_btn.click(
initialize_database,
inputs=[document],
outputs=[retriever, db_progress]
)
qachain_btn.click(
initialize_LLM,
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, retriever],
outputs=[qa_chain, llm_progress]
).then(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
msg.submit(
conversation,
inputs=[qa_chain, msg, chatbot, language],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
submit_btn.click(
conversation,
inputs=[qa_chain, msg, chatbot, language],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
clear_btn.click(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo()