|
import gradio as gr |
|
import os |
|
import torch |
|
from langchain_community.vectorstores import FAISS, Chroma |
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_community.llms import HuggingFaceEndpoint |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain_community.retrievers import BM25Retriever |
|
from langchain.retrievers import EnsembleRetriever |
|
|
|
|
|
|
|
|
|
|
|
from langchain.retrievers.multi_query import MultiQueryRetriever |
|
|
|
api_token = os.getenv("FirstToken") |
|
|
|
|
|
list_llm = [ |
|
"meta-llama/Meta-Llama-3-8B-Instruct", |
|
"mistralai/Mistral-7B-Instruct-v0.2", |
|
"deepseek-ai/deepseek-llm-7b-chat" |
|
] |
|
list_llm_simple = [os.path.basename(llm) for llm in list_llm] |
|
|
|
|
|
|
|
|
|
def load_doc(list_file_path): |
|
"""Load and split PDF documents into chunks.""" |
|
loaders = [PyPDFLoader(x) for x in list_file_path] |
|
pages = [] |
|
for loader in loaders: |
|
pages.extend(loader.load()) |
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=1024, |
|
chunk_overlap=64 |
|
) |
|
doc_splits = text_splitter.split_documents(pages) |
|
return doc_splits |
|
|
|
|
|
|
|
|
|
def create_chromadb(splits, persist_directory="chroma_db"): |
|
"""Create ChromaDB vector database from document splits.""" |
|
embeddings = HuggingFaceEmbeddings() |
|
chromadb = Chroma.from_documents( |
|
documents=splits, |
|
embedding=embeddings, |
|
persist_directory=persist_directory |
|
) |
|
chromadb.persist() |
|
return chromadb |
|
|
|
def create_faissdb(splits): |
|
"""Create FAISS vector database from document splits.""" |
|
embeddings = HuggingFaceEmbeddings() |
|
faissdb = FAISS.from_documents(splits, embeddings) |
|
return faissdb |
|
|
|
|
|
|
|
|
|
def create_bm25_retriever(splits): |
|
"""Create BM25 retriever from document splits.""" |
|
bm25_retriever = BM25Retriever.from_documents(splits) |
|
bm25_retriever.k = 3 |
|
return bm25_retriever |
|
|
|
|
|
|
|
|
|
def create_multi_query_retriever(llm, vector_db, num_queries=3): |
|
""" |
|
Create a MultiQueryRetriever. |
|
|
|
Args: |
|
llm: The language model to use for query generation. |
|
vector_db: The vector database to retrieve from. |
|
num_queries: The number of diverse queries to generate. |
|
|
|
Returns: |
|
A MultiQueryRetriever instance. |
|
""" |
|
retriever = MultiQueryRetriever.from_llm( |
|
llm=llm, retriever=vector_db.as_retriever(), |
|
output_key="answer", |
|
memory_key="chat_history", |
|
return_messages=True, |
|
verbose=False |
|
) |
|
return retriever |
|
|
|
|
|
|
|
|
|
def create_ensemble_retriever(vector_db, bm25_retriever): |
|
"""Create an ensemble retriever combining ChromaDB and BM25.""" |
|
ensemble_retriever = EnsembleRetriever( |
|
retrievers=[vector_db.as_retriever(), bm25_retriever], |
|
weights=[0.7, 0.3] |
|
) |
|
return ensemble_retriever |
|
|
|
|
|
|
|
|
|
def initialize_database(list_file_obj, progress=gr.Progress()): |
|
"""Initialize the document database.""" |
|
list_file_path = [x.name for x in list_file_obj if x is not None] |
|
doc_splits = load_doc(list_file_path) |
|
|
|
|
|
chromadb = create_chromadb(doc_splits) |
|
bm25_retriever = create_bm25_retriever(doc_splits) |
|
|
|
|
|
ensemble_retriever = create_ensemble_retriever(chromadb, bm25_retriever) |
|
|
|
return ensemble_retriever, "Database created successfully!" |
|
|
|
|
|
|
|
|
|
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, retriever, progress=gr.Progress()): |
|
"""Initialize the language model chain.""" |
|
llm = HuggingFaceEndpoint( |
|
repo_id=llm_model, |
|
huggingfacehub_api_token=api_token, |
|
temperature=temperature, |
|
max_new_tokens=max_tokens, |
|
top_k=top_k, |
|
task="text-generation" |
|
) |
|
|
|
memory = ConversationBufferMemory( |
|
memory_key="chat_history", |
|
output_key='answer', |
|
return_messages=True |
|
) |
|
|
|
qa_chain = ConversationalRetrievalChain.from_llm( |
|
llm, |
|
retriever=retriever, |
|
chain_type="stuff", |
|
memory=memory, |
|
return_source_documents=True, |
|
verbose=False, |
|
) |
|
return qa_chain |
|
|
|
|
|
|
|
|
|
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, retriever, progress=gr.Progress()): |
|
"""Initialize the Language Model.""" |
|
llm_name = list_llm[llm_option] |
|
print("Selected LLM model:", llm_name) |
|
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, retriever, progress) |
|
return qa_chain, "Analysis Assistant initialized and ready!" |
|
|
|
|
|
|
|
|
|
def format_chat_history(message, chat_history): |
|
"""Format chat history for the model.""" |
|
formatted_chat_history = [] |
|
for user_message, bot_message in chat_history: |
|
formatted_chat_history.append(f"User: {user_message}") |
|
formatted_chat_history.append(f"Assistant: {bot_message}") |
|
return formatted_chat_history |
|
|
|
|
|
|
|
|
|
def conversation(qa_chain, message, history, lang): |
|
"""Handle conversation and document analysis.""" |
|
|
|
|
|
if lang == "pt": |
|
message += " (Responda em PortuguΓͺs)" |
|
else: |
|
message += " (Respond in English)" |
|
|
|
formatted_chat_history = format_chat_history(message, history) |
|
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history}) |
|
response_answer = response["answer"] |
|
|
|
|
|
if "(Respond" in message: |
|
message = message.split(" (Respond")[0] |
|
|
|
if response_answer.find("Helpful Answer:") != -1: |
|
response_answer = response_answer.split("Helpful Answer:")[-1] |
|
|
|
response_sources = response["source_documents"] |
|
response_source1 = response_sources[0].page_content.strip() |
|
response_source2 = response_sources[1].page_content.strip() |
|
response_source3 = response_sources[2].page_content.strip() |
|
response_source1_page = response_sources[0].metadata["page"] + 1 |
|
response_source2_page = response_sources[1].metadata["page"] + 1 |
|
response_source3_page = response_sources[2].metadata["page"] + 1 |
|
new_history = history + [(message, response_answer)] |
|
|
|
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page |
|
|
|
|
|
|
|
|
|
def demo(): |
|
"""Main demo application with enhanced layout.""" |
|
theme = gr.themes.Default( |
|
primary_hue="indigo", |
|
secondary_hue="blue", |
|
neutral_hue="slate", |
|
) |
|
|
|
|
|
custom_css = """ |
|
.container {background: #ffffff; padding: 1rem; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1);} |
|
.header {text-align: center; margin-bottom: 2rem;} |
|
.header h1 {color: #1a365d; font-size: 2.5rem; margin-bottom: 0.5rem;} |
|
.header p {color: #4a5568; font-size: 1.2rem;} |
|
.section {margin-bottom: 1.5rem; padding: 1rem; background: #f8fafc; border-radius: 8px;} |
|
.control-panel {margin-bottom: 1rem;} |
|
.chat-area {background: white; padding: 1rem; border-radius: 8px;} |
|
""" |
|
|
|
with gr.Blocks(theme=theme, css=custom_css) as demo: |
|
retriever = gr.State() |
|
qa_chain = gr.State() |
|
language = gr.State(value="en") |
|
|
|
|
|
gr.HTML( |
|
""" |
|
<div class="header"> |
|
<h1>MetroAssist AI</h1> |
|
<p>Expert System for Metrology Report Analysis</p> |
|
</div> |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(scale=1): |
|
gr.Markdown("## Document Processing") |
|
|
|
|
|
with gr.Column(elem_classes="section"): |
|
gr.Markdown("### π Upload Documents") |
|
document = gr.Files( |
|
label="Metrology Reports (PDF)", |
|
file_count="multiple", |
|
file_types=["pdf"] |
|
) |
|
db_btn = gr.Button("Process Documents") |
|
db_progress = gr.Textbox( |
|
value="Ready for documents", |
|
label="Processing Status" |
|
) |
|
|
|
|
|
with gr.Column(elem_classes="section"): |
|
gr.Markdown("### π€ Model Configuration") |
|
llm_btn = gr.Radio( |
|
choices=list_llm_simple, |
|
label="Select AI Model", |
|
value=list_llm_simple[0], |
|
type="index" |
|
) |
|
|
|
|
|
language_btn = gr.Radio( |
|
choices=["English", "PortuguΓͺs"], |
|
label="Response Language", |
|
value="English", |
|
type="value" |
|
) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
slider_temperature = gr.Slider( |
|
minimum=0.01, |
|
maximum=1.0, |
|
value=0.5, |
|
step=0.1, |
|
label="Analysis Precision" |
|
) |
|
slider_maxtokens = gr.Slider( |
|
minimum=128, |
|
maximum=9192, |
|
value=4096, |
|
step=128, |
|
label="Response Length" |
|
) |
|
slider_topk = gr.Slider( |
|
minimum=1, |
|
maximum=10, |
|
value=3, |
|
step=1, |
|
label="Analysis Diversity" |
|
) |
|
|
|
qachain_btn = gr.Button("Initialize Assistant") |
|
llm_progress = gr.Textbox( |
|
value="Not initialized", |
|
label="Assistant Status" |
|
) |
|
|
|
|
|
with gr.Column(scale=2): |
|
gr.Markdown("## Interactive Analysis") |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown( |
|
""" |
|
### π Capabilities |
|
- Calibration Analysis |
|
- Standards Compliance |
|
- Uncertainty Evaluation |
|
""" |
|
) |
|
with gr.Column(): |
|
gr.Markdown( |
|
""" |
|
### π‘ Best Practices |
|
- Ask specific questions |
|
- Include measurement context |
|
- Specify standards |
|
""" |
|
) |
|
|
|
|
|
with gr.Column(elem_classes="chat-area"): |
|
chatbot = gr.Chatbot( |
|
height=400, |
|
label="Analysis Conversation" |
|
) |
|
with gr.Row(): |
|
msg = gr.Textbox( |
|
placeholder="Ask about your metrology report...", |
|
label="Query" |
|
) |
|
submit_btn = gr.Button("Send") |
|
clear_btn = gr.ClearButton( |
|
[msg, chatbot], |
|
value="Clear" |
|
) |
|
|
|
|
|
with gr.Accordion("Document References", open=False): |
|
with gr.Row(): |
|
with gr.Column(): |
|
doc_source1 = gr.Textbox(label="Reference 1", lines=2) |
|
source1_page = gr.Number(label="Page") |
|
with gr.Column(): |
|
doc_source2 = gr.Textbox(label="Reference 2", lines=2) |
|
source2_page = gr.Number(label="Page") |
|
with gr.Column(): |
|
doc_source3 = gr.Textbox(label="Reference 3", lines=2) |
|
source3_page = gr.Number(label="Page") |
|
|
|
|
|
gr.Markdown( |
|
""" |
|
--- |
|
### About MetroAssist AI |
|
|
|
A specialized tool for metrology professionals, providing advanced analysis |
|
of calibration certificates, measurement data, and technical standards compliance. |
|
|
|
**Version 1.0** | Β© 2024 MetroAssist AI |
|
""" |
|
) |
|
|
|
|
|
language_btn.change( |
|
lambda x: "en" if x == "English" else "pt", |
|
inputs=language_btn, |
|
outputs=language |
|
) |
|
|
|
db_btn.click( |
|
initialize_database, |
|
inputs=[document], |
|
outputs=[retriever, db_progress] |
|
) |
|
|
|
qachain_btn.click( |
|
initialize_LLM, |
|
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, retriever], |
|
outputs=[qa_chain, llm_progress] |
|
).then( |
|
lambda: [None, "", 0, "", 0, "", 0], |
|
inputs=None, |
|
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], |
|
queue=False |
|
) |
|
|
|
msg.submit( |
|
conversation, |
|
inputs=[qa_chain, msg, chatbot, language], |
|
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], |
|
queue=False |
|
) |
|
|
|
submit_btn.click( |
|
conversation, |
|
inputs=[qa_chain, msg, chatbot, language], |
|
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], |
|
queue=False |
|
) |
|
|
|
clear_btn.click( |
|
lambda: [None, "", 0, "", 0, "", 0], |
|
inputs=None, |
|
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], |
|
queue=False |
|
) |
|
|
|
demo.queue().launch(debug=True) |
|
|
|
if __name__ == "__main__": |
|
demo() |
|
|