Update app.py
Browse files
app.py
CHANGED
@@ -9,15 +9,13 @@ from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
9 |
from langchain_community.llms import HuggingFaceEndpoint
|
10 |
from langchain.memory import ConversationBufferMemory
|
11 |
from langchain_community.retrievers import BM25Retriever
|
12 |
-
from langchain.retrievers import EnsembleRetriever
|
13 |
-
|
14 |
-
#from langchain.chains.query_constructor.base import AttributeInfo # Removed deprecated code
|
15 |
-
#from langchain.chains import create_query_chain # Removed deprecated code
|
16 |
-
#from langchain.retrievers.self_query.base import SelfQueryRetriever # Removed deprecated code
|
17 |
-
#from langchain.chains.query_constructor.schema import FieldInfo # Removed deprecated code
|
18 |
from langchain.retrievers.multi_query import MultiQueryRetriever
|
19 |
|
|
|
20 |
api_token = os.getenv("FirstToken")
|
|
|
|
|
21 |
|
22 |
# Available LLM models
|
23 |
list_llm = [
|
@@ -30,21 +28,22 @@ list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
|
30 |
# -----------------------------------------------------------------------------
|
31 |
# Document Loading and Splitting
|
32 |
# -----------------------------------------------------------------------------
|
33 |
-
def load_doc(list_file_path):
|
34 |
"""Load and split PDF documents into chunks."""
|
|
|
|
|
|
|
35 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
36 |
pages = []
|
37 |
-
for loader in loaders:
|
|
|
38 |
pages.extend(loader.load())
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
)
|
43 |
-
doc_splits = text_splitter.split_documents(pages)
|
44 |
-
return doc_splits
|
45 |
|
46 |
# -----------------------------------------------------------------------------
|
47 |
-
# Vector Database Creation
|
48 |
# -----------------------------------------------------------------------------
|
49 |
def create_chromadb(splits, persist_directory="chroma_db"):
|
50 |
"""Create ChromaDB vector database from document splits."""
|
@@ -54,378 +53,191 @@ def create_chromadb(splits, persist_directory="chroma_db"):
|
|
54 |
embedding=embeddings,
|
55 |
persist_directory=persist_directory
|
56 |
)
|
57 |
-
chromadb.persist() # Ensure data is written to disk
|
58 |
return chromadb
|
59 |
|
60 |
def create_faissdb(splits):
|
61 |
"""Create FAISS vector database from document splits."""
|
62 |
embeddings = HuggingFaceEmbeddings()
|
63 |
-
|
64 |
-
return faissdb
|
65 |
|
66 |
# -----------------------------------------------------------------------------
|
67 |
-
#
|
68 |
# -----------------------------------------------------------------------------
|
69 |
def create_bm25_retriever(splits):
|
70 |
"""Create BM25 retriever from document splits."""
|
71 |
-
|
72 |
-
|
73 |
-
return bm25_retriever
|
74 |
-
|
75 |
-
# -----------------------------------------------------------------------------
|
76 |
-
# MultiQueryRetriever
|
77 |
-
# -----------------------------------------------------------------------------
|
78 |
-
def create_multi_query_retriever(llm, vector_db, num_queries=3):
|
79 |
-
"""
|
80 |
-
Create a MultiQueryRetriever.
|
81 |
-
|
82 |
-
Args:
|
83 |
-
llm: The language model to use for query generation.
|
84 |
-
vector_db: The vector database to retrieve from.
|
85 |
-
num_queries: The number of diverse queries to generate.
|
86 |
-
|
87 |
-
Returns:
|
88 |
-
A MultiQueryRetriever instance.
|
89 |
-
"""
|
90 |
-
retriever = MultiQueryRetriever.from_llm(
|
91 |
-
llm=llm, retriever=vector_db.as_retriever(),
|
92 |
-
output_key="answer",
|
93 |
-
memory_key="chat_history",
|
94 |
-
return_messages=True,
|
95 |
-
verbose=False
|
96 |
-
)
|
97 |
return retriever
|
98 |
|
99 |
-
# -----------------------------------------------------------------------------
|
100 |
-
# Ensemble Retriever (Combine VectorDB and BM25)
|
101 |
-
# -----------------------------------------------------------------------------
|
102 |
def create_ensemble_retriever(vector_db, bm25_retriever):
|
103 |
-
"""Create an ensemble retriever combining
|
104 |
-
|
105 |
retrievers=[vector_db.as_retriever(), bm25_retriever],
|
106 |
-
weights=[0.7, 0.3]
|
107 |
)
|
108 |
-
return ensemble_retriever
|
109 |
|
110 |
# -----------------------------------------------------------------------------
|
111 |
# Initialize Database
|
112 |
# -----------------------------------------------------------------------------
|
113 |
def initialize_database(list_file_obj, progress=gr.Progress()):
|
114 |
-
"""Initialize the document database."""
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
return ensemble_retriever, "Database created successfully!"
|
126 |
|
127 |
# -----------------------------------------------------------------------------
|
128 |
# Initialize LLM Chain
|
129 |
# -----------------------------------------------------------------------------
|
130 |
-
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, retriever
|
131 |
-
"""Initialize the language model chain."""
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
156 |
|
157 |
# -----------------------------------------------------------------------------
|
158 |
# Initialize LLM
|
159 |
# -----------------------------------------------------------------------------
|
160 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, retriever, progress=gr.Progress()):
|
161 |
"""Initialize the Language Model."""
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
166 |
|
167 |
# -----------------------------------------------------------------------------
|
168 |
# Chat History Formatting
|
169 |
# -----------------------------------------------------------------------------
|
170 |
def format_chat_history(message, chat_history):
|
171 |
"""Format chat history for the model."""
|
172 |
-
|
173 |
-
for user_message, bot_message in chat_history:
|
174 |
-
formatted_chat_history.append(f"User: {user_message}")
|
175 |
-
formatted_chat_history.append(f"Assistant: {bot_message}")
|
176 |
-
return formatted_chat_history
|
177 |
|
178 |
# -----------------------------------------------------------------------------
|
179 |
# Conversation Function
|
180 |
# -----------------------------------------------------------------------------
|
181 |
def conversation(qa_chain, message, history, lang):
|
182 |
"""Handle conversation and document analysis."""
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
else
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
|
212 |
# -----------------------------------------------------------------------------
|
213 |
# Gradio Demo
|
214 |
# -----------------------------------------------------------------------------
|
215 |
def demo():
|
216 |
"""Main demo application with enhanced layout."""
|
217 |
-
theme = gr.themes.Default(
|
218 |
-
primary_hue="indigo",
|
219 |
-
secondary_hue="blue",
|
220 |
-
neutral_hue="slate",
|
221 |
-
)
|
222 |
-
|
223 |
-
# Custom CSS for advanced layout
|
224 |
custom_css = """
|
225 |
.container {background: #ffffff; padding: 1rem; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1);}
|
226 |
.header {text-align: center; margin-bottom: 2rem;}
|
227 |
.header h1 {color: #1a365d; font-size: 2.5rem; margin-bottom: 0.5rem;}
|
228 |
-
.header p {color: #4a5568; font-size: 1.2rem;}
|
229 |
.section {margin-bottom: 1.5rem; padding: 1rem; background: #f8fafc; border-radius: 8px;}
|
230 |
-
.control-panel {margin-bottom: 1rem;}
|
231 |
-
.chat-area {background: white; padding: 1rem; border-radius: 8px;}
|
232 |
"""
|
233 |
|
234 |
with gr.Blocks(theme=theme, css=custom_css) as demo:
|
235 |
retriever = gr.State()
|
236 |
qa_chain = gr.State()
|
237 |
-
language = gr.State(value="en")
|
238 |
|
239 |
-
# Header
|
240 |
gr.HTML(
|
241 |
-
""
|
242 |
-
<div class="header">
|
243 |
-
<h1>MetroAssist AI</h1>
|
244 |
-
<p>Expert System for Metrology Report Analysis</p>
|
245 |
-
</div>
|
246 |
-
"""
|
247 |
)
|
248 |
|
249 |
with gr.Row():
|
250 |
-
# Left Column - Controls
|
251 |
with gr.Column(scale=1):
|
252 |
gr.Markdown("## Document Processing")
|
253 |
-
|
254 |
-
# File Upload Section
|
255 |
with gr.Column(elem_classes="section"):
|
256 |
-
gr.
|
257 |
-
document = gr.Files(
|
258 |
-
label="Metrology Reports (PDF)",
|
259 |
-
file_count="multiple",
|
260 |
-
file_types=["pdf"]
|
261 |
-
)
|
262 |
db_btn = gr.Button("Process Documents")
|
263 |
-
db_progress = gr.Textbox(
|
264 |
-
value="Ready for documents",
|
265 |
-
label="Processing Status"
|
266 |
-
)
|
267 |
|
268 |
-
|
269 |
with gr.Column(elem_classes="section"):
|
270 |
-
gr.
|
271 |
-
|
272 |
-
choices=list_llm_simple,
|
273 |
-
label="Select AI Model",
|
274 |
-
value=list_llm_simple[0],
|
275 |
-
type="index"
|
276 |
-
)
|
277 |
-
|
278 |
-
# Language selection button
|
279 |
-
language_btn = gr.Radio(
|
280 |
-
choices=["English", "Português"],
|
281 |
-
label="Response Language",
|
282 |
-
value="English",
|
283 |
-
type="value"
|
284 |
-
)
|
285 |
-
|
286 |
with gr.Accordion("Advanced Settings", open=False):
|
287 |
-
slider_temperature = gr.Slider(
|
288 |
-
|
289 |
-
|
290 |
-
value=0.5,
|
291 |
-
step=0.1,
|
292 |
-
label="Analysis Precision"
|
293 |
-
)
|
294 |
-
slider_maxtokens = gr.Slider(
|
295 |
-
minimum=128,
|
296 |
-
maximum=9192,
|
297 |
-
value=4096,
|
298 |
-
step=128,
|
299 |
-
label="Response Length"
|
300 |
-
)
|
301 |
-
slider_topk = gr.Slider(
|
302 |
-
minimum=1,
|
303 |
-
maximum=10,
|
304 |
-
value=3,
|
305 |
-
step=1,
|
306 |
-
label="Analysis Diversity"
|
307 |
-
)
|
308 |
-
|
309 |
qachain_btn = gr.Button("Initialize Assistant")
|
310 |
-
llm_progress = gr.Textbox(
|
311 |
-
value="Not initialized",
|
312 |
-
label="Assistant Status"
|
313 |
-
)
|
314 |
|
315 |
-
# Right Column - Chat Interface
|
316 |
with gr.Column(scale=2):
|
317 |
gr.Markdown("## Interactive Analysis")
|
318 |
-
|
319 |
-
# Features Section
|
320 |
with gr.Row():
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
### 📊 Capabilities
|
325 |
-
- Calibration Analysis
|
326 |
-
- Standards Compliance
|
327 |
-
- Uncertainty Evaluation
|
328 |
-
"""
|
329 |
-
)
|
330 |
-
with gr.Column():
|
331 |
-
gr.Markdown(
|
332 |
-
"""
|
333 |
-
### 💡 Best Practices
|
334 |
-
- Ask specific questions
|
335 |
-
- Include measurement context
|
336 |
-
- Specify standards
|
337 |
-
"""
|
338 |
-
)
|
339 |
-
|
340 |
-
# Chat Interface
|
341 |
-
with gr.Column(elem_classes="chat-area"):
|
342 |
-
chatbot = gr.Chatbot(
|
343 |
-
height=400,
|
344 |
-
label="Analysis Conversation"
|
345 |
-
)
|
346 |
-
with gr.Row():
|
347 |
-
msg = gr.Textbox(
|
348 |
-
placeholder="Ask about your metrology report...",
|
349 |
-
label="Query"
|
350 |
-
)
|
351 |
-
submit_btn = gr.Button("Send")
|
352 |
-
clear_btn = gr.ClearButton(
|
353 |
-
[msg, chatbot],
|
354 |
-
value="Clear"
|
355 |
-
)
|
356 |
-
|
357 |
-
# References Section
|
358 |
with gr.Accordion("Document References", open=False):
|
359 |
with gr.Row():
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
with gr.Column():
|
364 |
-
doc_source2 = gr.Textbox(label="Reference 2", lines=2)
|
365 |
-
source2_page = gr.Number(label="Page")
|
366 |
-
with gr.Column():
|
367 |
-
doc_source3 = gr.Textbox(label="Reference 3", lines=2)
|
368 |
-
source3_page = gr.Number(label="Page")
|
369 |
-
|
370 |
-
# Footer
|
371 |
-
gr.Markdown(
|
372 |
-
"""
|
373 |
-
---
|
374 |
-
### About MetroAssist AI
|
375 |
-
|
376 |
-
A specialized tool for metrology professionals, providing advanced analysis
|
377 |
-
of calibration certificates, measurement data, and technical standards compliance.
|
378 |
-
|
379 |
-
**Version 1.0** | © 2024 MetroAssist AI
|
380 |
-
"""
|
381 |
-
)
|
382 |
|
383 |
# Event Handlers
|
384 |
-
language_btn.change(
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
)
|
389 |
-
|
390 |
-
db_btn.click(
|
391 |
-
initialize_database,
|
392 |
-
inputs=[document],
|
393 |
-
outputs=[retriever, db_progress]
|
394 |
-
)
|
395 |
-
|
396 |
-
qachain_btn.click(
|
397 |
-
initialize_LLM,
|
398 |
-
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, retriever],
|
399 |
-
outputs=[qa_chain, llm_progress]
|
400 |
-
).then(
|
401 |
-
lambda: [None, "", 0, "", 0, "", 0],
|
402 |
-
inputs=None,
|
403 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
404 |
-
queue=False
|
405 |
-
)
|
406 |
-
|
407 |
-
msg.submit(
|
408 |
-
conversation,
|
409 |
-
inputs=[qa_chain, msg, chatbot, language],
|
410 |
-
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
411 |
-
queue=False
|
412 |
-
)
|
413 |
-
|
414 |
-
submit_btn.click(
|
415 |
-
conversation,
|
416 |
-
inputs=[qa_chain, msg, chatbot, language],
|
417 |
-
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
418 |
-
queue=False
|
419 |
-
)
|
420 |
-
|
421 |
-
clear_btn.click(
|
422 |
-
lambda: [None, "", 0, "", 0, "", 0],
|
423 |
-
inputs=None,
|
424 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
425 |
-
queue=False
|
426 |
-
)
|
427 |
|
428 |
-
demo.
|
429 |
|
430 |
if __name__ == "__main__":
|
431 |
-
demo()
|
|
|
9 |
from langchain_community.llms import HuggingFaceEndpoint
|
10 |
from langchain.memory import ConversationBufferMemory
|
11 |
from langchain_community.retrievers import BM25Retriever
|
12 |
+
from langchain.retrievers import EnsembleRetriever
|
|
|
|
|
|
|
|
|
|
|
13 |
from langchain.retrievers.multi_query import MultiQueryRetriever
|
14 |
|
15 |
+
# Environment variable for API token
|
16 |
api_token = os.getenv("FirstToken")
|
17 |
+
if not api_token:
|
18 |
+
raise ValueError("Environment variable 'FirstToken' not set. Please set the Hugging Face API token.")
|
19 |
|
20 |
# Available LLM models
|
21 |
list_llm = [
|
|
|
28 |
# -----------------------------------------------------------------------------
|
29 |
# Document Loading and Splitting
|
30 |
# -----------------------------------------------------------------------------
|
31 |
+
def load_doc(list_file_path, progress=gr.Progress()):
|
32 |
"""Load and split PDF documents into chunks."""
|
33 |
+
if not list_file_path:
|
34 |
+
raise ValueError("No files provided for processing.")
|
35 |
+
|
36 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
37 |
pages = []
|
38 |
+
for i, loader in enumerate(loaders):
|
39 |
+
progress((i + 1) / len(loaders), "Loading PDFs...")
|
40 |
pages.extend(loader.load())
|
41 |
+
|
42 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
|
43 |
+
return text_splitter.split_documents(pages)
|
|
|
|
|
|
|
44 |
|
45 |
# -----------------------------------------------------------------------------
|
46 |
+
# Vector Database Creation
|
47 |
# -----------------------------------------------------------------------------
|
48 |
def create_chromadb(splits, persist_directory="chroma_db"):
|
49 |
"""Create ChromaDB vector database from document splits."""
|
|
|
53 |
embedding=embeddings,
|
54 |
persist_directory=persist_directory
|
55 |
)
|
|
|
56 |
return chromadb
|
57 |
|
58 |
def create_faissdb(splits):
|
59 |
"""Create FAISS vector database from document splits."""
|
60 |
embeddings = HuggingFaceEmbeddings()
|
61 |
+
return FAISS.from_documents(splits, embeddings)
|
|
|
62 |
|
63 |
# -----------------------------------------------------------------------------
|
64 |
+
# Retrievers
|
65 |
# -----------------------------------------------------------------------------
|
66 |
def create_bm25_retriever(splits):
|
67 |
"""Create BM25 retriever from document splits."""
|
68 |
+
retriever = BM25Retriever.from_documents(splits)
|
69 |
+
retriever.k = 3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
return retriever
|
71 |
|
|
|
|
|
|
|
72 |
def create_ensemble_retriever(vector_db, bm25_retriever):
|
73 |
+
"""Create an ensemble retriever combining vector DB and BM25."""
|
74 |
+
return EnsembleRetriever(
|
75 |
retrievers=[vector_db.as_retriever(), bm25_retriever],
|
76 |
+
weights=[0.7, 0.3]
|
77 |
)
|
|
|
78 |
|
79 |
# -----------------------------------------------------------------------------
|
80 |
# Initialize Database
|
81 |
# -----------------------------------------------------------------------------
|
82 |
def initialize_database(list_file_obj, progress=gr.Progress()):
|
83 |
+
"""Initialize the document database with error handling."""
|
84 |
+
try:
|
85 |
+
list_file_path = [x.name for x in list_file_obj if x is not None]
|
86 |
+
doc_splits = load_doc(list_file_path, progress)
|
87 |
+
chromadb = create_chromadb(doc_splits)
|
88 |
+
bm25_retriever = create_bm25_retriever(doc_splits)
|
89 |
+
ensemble_retriever = create_ensemble_retriever(chromadb, bm25_retriever)
|
90 |
+
return ensemble_retriever, "Database created successfully!"
|
91 |
+
except Exception as e:
|
92 |
+
return None, f"Error initializing database: {str(e)}"
|
|
|
|
|
93 |
|
94 |
# -----------------------------------------------------------------------------
|
95 |
# Initialize LLM Chain
|
96 |
# -----------------------------------------------------------------------------
|
97 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, retriever):
|
98 |
+
"""Initialize the language model chain with error handling."""
|
99 |
+
try:
|
100 |
+
llm = HuggingFaceEndpoint(
|
101 |
+
repo_id=llm_model,
|
102 |
+
huggingfacehub_api_token=api_token,
|
103 |
+
temperature=temperature,
|
104 |
+
max_new_tokens=max_tokens,
|
105 |
+
top_k=top_k,
|
106 |
+
task="text-generation"
|
107 |
+
)
|
108 |
+
memory = ConversationBufferMemory(
|
109 |
+
memory_key="chat_history",
|
110 |
+
output_key="answer",
|
111 |
+
return_messages=True
|
112 |
+
)
|
113 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
114 |
+
llm=llm,
|
115 |
+
retriever=retriever,
|
116 |
+
chain_type="stuff",
|
117 |
+
memory=memory,
|
118 |
+
return_source_documents=True,
|
119 |
+
verbose=False
|
120 |
+
)
|
121 |
+
return qa_chain
|
122 |
+
except Exception as e:
|
123 |
+
raise RuntimeError(f"Failed to initialize LLM chain: {str(e)}")
|
124 |
|
125 |
# -----------------------------------------------------------------------------
|
126 |
# Initialize LLM
|
127 |
# -----------------------------------------------------------------------------
|
128 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, retriever, progress=gr.Progress()):
|
129 |
"""Initialize the Language Model."""
|
130 |
+
try:
|
131 |
+
llm_name = list_llm[llm_option]
|
132 |
+
print(f"Selected LLM model: {llm_name}")
|
133 |
+
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, retriever)
|
134 |
+
return qa_chain, "Analysis Assistant initialized and ready!"
|
135 |
+
except Exception as e:
|
136 |
+
return None, f"Error initializing LLM: {str(e)}"
|
137 |
|
138 |
# -----------------------------------------------------------------------------
|
139 |
# Chat History Formatting
|
140 |
# -----------------------------------------------------------------------------
|
141 |
def format_chat_history(message, chat_history):
|
142 |
"""Format chat history for the model."""
|
143 |
+
return [f"User: {user_msg}\nAssistant: {bot_msg}" for user_msg, bot_msg in chat_history]
|
|
|
|
|
|
|
|
|
144 |
|
145 |
# -----------------------------------------------------------------------------
|
146 |
# Conversation Function
|
147 |
# -----------------------------------------------------------------------------
|
148 |
def conversation(qa_chain, message, history, lang):
|
149 |
"""Handle conversation and document analysis."""
|
150 |
+
if not qa_chain:
|
151 |
+
return None, gr.update(value="Assistant not initialized"), history, "", 0, "", 0, "", 0
|
152 |
+
|
153 |
+
# Add language instruction
|
154 |
+
lang_instruction = " (Responda em Português)" if lang == "pt" else " (Respond in English)"
|
155 |
+
query = message + lang_instruction
|
156 |
+
|
157 |
+
try:
|
158 |
+
formatted_chat_history = format_chat_history(message, history)
|
159 |
+
response = qa_chain.invoke({"question": query, "chat_history": formatted_chat_history})
|
160 |
+
answer = response["answer"].split("Helpful Answer:")[-1].strip() if "Helpful Answer:" in response["answer"] else response["answer"]
|
161 |
+
|
162 |
+
# Extract sources (handle cases where fewer than 3 documents are returned)
|
163 |
+
sources = response["source_documents"]
|
164 |
+
source_data = [("Unknown", 0)] * 3
|
165 |
+
for i, doc in enumerate(sources[:3]):
|
166 |
+
source_data[i] = (doc.page_content.strip(), doc.metadata["page"] + 1)
|
167 |
+
|
168 |
+
# Update history without the language instruction
|
169 |
+
new_history = history + [(message, answer)]
|
170 |
+
return (
|
171 |
+
qa_chain, gr.update(value=""), new_history,
|
172 |
+
source_data[0][0], source_data[0][1],
|
173 |
+
source_data[1][0], source_data[1][1],
|
174 |
+
source_data[2][0], source_data[2][1]
|
175 |
+
)
|
176 |
+
except Exception as e:
|
177 |
+
return qa_chain, gr.update(value=f"Error: {str(e)}"), history, "", 0, "", 0, "", 0
|
178 |
|
179 |
# -----------------------------------------------------------------------------
|
180 |
# Gradio Demo
|
181 |
# -----------------------------------------------------------------------------
|
182 |
def demo():
|
183 |
"""Main demo application with enhanced layout."""
|
184 |
+
theme = gr.themes.Default(primary_hue="indigo", secondary_hue="blue", neutral_hue="slate")
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
custom_css = """
|
186 |
.container {background: #ffffff; padding: 1rem; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1);}
|
187 |
.header {text-align: center; margin-bottom: 2rem;}
|
188 |
.header h1 {color: #1a365d; font-size: 2.5rem; margin-bottom: 0.5rem;}
|
|
|
189 |
.section {margin-bottom: 1.5rem; padding: 1rem; background: #f8fafc; border-radius: 8px;}
|
|
|
|
|
190 |
"""
|
191 |
|
192 |
with gr.Blocks(theme=theme, css=custom_css) as demo:
|
193 |
retriever = gr.State()
|
194 |
qa_chain = gr.State()
|
195 |
+
language = gr.State(value="en")
|
196 |
|
|
|
197 |
gr.HTML(
|
198 |
+
'<div class="header"><h1>MetroAssist AI</h1><p>Expert System for Metrology Report Analysis</p></div>'
|
|
|
|
|
|
|
|
|
|
|
199 |
)
|
200 |
|
201 |
with gr.Row():
|
|
|
202 |
with gr.Column(scale=1):
|
203 |
gr.Markdown("## Document Processing")
|
|
|
|
|
204 |
with gr.Column(elem_classes="section"):
|
205 |
+
document = gr.Files(label="Metrology Reports (PDF)", file_count="multiple", file_types=["pdf"])
|
|
|
|
|
|
|
|
|
|
|
206 |
db_btn = gr.Button("Process Documents")
|
207 |
+
db_progress = gr.Textbox(value="Ready for documents", label="Processing Status")
|
|
|
|
|
|
|
208 |
|
209 |
+
gr.Markdown("## Model Configuration")
|
210 |
with gr.Column(elem_classes="section"):
|
211 |
+
llm_btn = gr.Radio(choices=list_llm_simple, label="Select AI Model", value=list_llm_simple[0], type="index")
|
212 |
+
language_btn = gr.Radio(choices=["English", "Português"], label="Response Language", value="English")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
with gr.Accordion("Advanced Settings", open=False):
|
214 |
+
slider_temperature = gr.Slider(0.01, 1.0, value=0.5, step=0.1, label="Analysis Precision")
|
215 |
+
slider_maxtokens = gr.Slider(128, 9192, value=4096, step=128, label="Response Length")
|
216 |
+
slider_topk = gr.Slider(1, 10, value=3, step=1, label="Analysis Diversity")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
qachain_btn = gr.Button("Initialize Assistant")
|
218 |
+
llm_progress = gr.Textbox(value="Not initialized", label="Assistant Status")
|
|
|
|
|
|
|
219 |
|
|
|
220 |
with gr.Column(scale=2):
|
221 |
gr.Markdown("## Interactive Analysis")
|
222 |
+
chatbot = gr.Chatbot(height=400, label="Analysis Conversation")
|
|
|
223 |
with gr.Row():
|
224 |
+
msg = gr.Textbox(placeholder="Ask about your metrology report...", label="Query")
|
225 |
+
submit_btn = gr.Button("Send")
|
226 |
+
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
with gr.Accordion("Document References", open=False):
|
228 |
with gr.Row():
|
229 |
+
doc_source1, source1_page = gr.Textbox(label="Reference 1", lines=2), gr.Number(label="Page")
|
230 |
+
doc_source2, source2_page = gr.Textbox(label="Reference 2", lines=2), gr.Number(label="Page")
|
231 |
+
doc_source3, source3_page = gr.Textbox(label="Reference 3", lines=2), gr.Number(label="Page")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
# Event Handlers
|
234 |
+
language_btn.change(lambda x: "en" if x == "English" else "pt", inputs=language_btn, outputs=language)
|
235 |
+
db_btn.click(initialize_database, inputs=[document], outputs=[retriever, db_progress])
|
236 |
+
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, retriever], outputs=[qa_chain, llm_progress])
|
237 |
+
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot, language], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page])
|
238 |
+
msg.submit(conversation, inputs=[qa_chain, msg, chatbot, language], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
+
demo.launch(debug=True)
|
241 |
|
242 |
if __name__ == "__main__":
|
243 |
+
demo()
|