Update app.py
Browse files
app.py
CHANGED
@@ -41,23 +41,28 @@ def create_db(splits):
|
|
41 |
return vectordb
|
42 |
|
43 |
|
|
|
|
|
|
|
44 |
# Initialize langchain LLM chain
|
45 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
46 |
if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
|
47 |
llm = HuggingFaceEndpoint(
|
48 |
repo_id=llm_model,
|
49 |
-
huggingfacehub_api_token
|
50 |
-
temperature
|
51 |
-
max_new_tokens
|
52 |
-
top_k
|
|
|
53 |
)
|
54 |
else:
|
55 |
llm = HuggingFaceEndpoint(
|
56 |
-
huggingfacehub_api_token
|
57 |
-
repo_id=llm_model,
|
58 |
-
temperature
|
59 |
-
max_new_tokens
|
60 |
-
top_k
|
|
|
61 |
)
|
62 |
|
63 |
memory = ConversationBufferMemory(
|
@@ -66,7 +71,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
66 |
return_messages=True
|
67 |
)
|
68 |
|
69 |
-
retriever=vector_db.as_retriever()
|
70 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
71 |
llm,
|
72 |
retriever=retriever,
|
@@ -76,7 +81,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
76 |
verbose=False,
|
77 |
)
|
78 |
return qa_chain
|
79 |
-
|
80 |
# Initialize database
|
81 |
def initialize_database(list_file_obj, progress=gr.Progress()):
|
82 |
# Create a list of documents (when valid)
|
|
|
41 |
return vectordb
|
42 |
|
43 |
|
44 |
+
# Initialize langchain LLM chain
|
45 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
46 |
+
|
47 |
# Initialize langchain LLM chain
|
48 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
49 |
if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
|
50 |
llm = HuggingFaceEndpoint(
|
51 |
repo_id=llm_model,
|
52 |
+
huggingfacehub_api_token=api_token,
|
53 |
+
temperature=temperature,
|
54 |
+
max_new_tokens=max_tokens,
|
55 |
+
top_k=top_k,
|
56 |
+
task="text-generation" # Explicitly specify the task type
|
57 |
)
|
58 |
else:
|
59 |
llm = HuggingFaceEndpoint(
|
60 |
+
huggingfacehub_api_token=api_token,
|
61 |
+
repo_id=llm_model,
|
62 |
+
temperature=temperature,
|
63 |
+
max_new_tokens=max_tokens,
|
64 |
+
top_k=top_k,
|
65 |
+
task="text-generation" # Explicitly specify the task type
|
66 |
)
|
67 |
|
68 |
memory = ConversationBufferMemory(
|
|
|
71 |
return_messages=True
|
72 |
)
|
73 |
|
74 |
+
retriever = vector_db.as_retriever()
|
75 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
76 |
llm,
|
77 |
retriever=retriever,
|
|
|
81 |
verbose=False,
|
82 |
)
|
83 |
return qa_chain
|
84 |
+
|
85 |
# Initialize database
|
86 |
def initialize_database(list_file_obj, progress=gr.Progress()):
|
87 |
# Create a list of documents (when valid)
|