Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import gradio as gr
|
|
2 |
import os
|
3 |
api_token = os.getenv("HF_TOKEN")
|
4 |
|
5 |
-
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
from langchain_community.document_loaders import PyPDFLoader
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
@@ -15,14 +14,16 @@ from langchain.memory import ConversationBufferMemory
|
|
15 |
from langchain_community.llms import HuggingFaceEndpoint
|
16 |
import torch
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
19 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
20 |
|
21 |
-
#
|
22 |
def load_doc(list_file_path):
|
23 |
-
# Processing for one document only
|
24 |
-
# loader = PyPDFLoader(file_path)
|
25 |
-
# pages = loader.load()
|
26 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
27 |
pages = []
|
28 |
for loader in loaders:
|
@@ -34,36 +35,20 @@ def load_doc(list_file_path):
|
|
34 |
doc_splits = text_splitter.split_documents(pages)
|
35 |
return doc_splits
|
36 |
|
37 |
-
# Create vector database
|
38 |
def create_db(splits):
|
39 |
embeddings = HuggingFaceEmbeddings()
|
40 |
vectordb = FAISS.from_documents(splits, embeddings)
|
41 |
return vectordb
|
42 |
|
43 |
-
|
44 |
-
# Initialize langchain LLM chain
|
45 |
-
from langchain_community.llms import HuggingFaceEndpoint
|
46 |
-
|
47 |
-
# Initialize langchain LLM chain
|
48 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
)
|
58 |
-
else:
|
59 |
-
llm = HuggingFaceEndpoint(
|
60 |
-
huggingfacehub_api_token=api_token,
|
61 |
-
repo_id=llm_model,
|
62 |
-
temperature=temperature,
|
63 |
-
max_new_tokens=max_tokens,
|
64 |
-
top_k=top_k,
|
65 |
-
task="text-generation" # Explicitly specify the task type
|
66 |
-
)
|
67 |
|
68 |
memory = ConversationBufferMemory(
|
69 |
memory_key="chat_history",
|
@@ -81,37 +66,28 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
81 |
verbose=False,
|
82 |
)
|
83 |
return qa_chain
|
84 |
-
|
85 |
-
# Initialize database
|
86 |
def initialize_database(list_file_obj, progress=gr.Progress()):
|
87 |
-
# Create a list of documents (when valid)
|
88 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
89 |
-
# Load document and create splits
|
90 |
doc_splits = load_doc(list_file_path)
|
91 |
-
# Create or load vector database
|
92 |
vector_db = create_db(doc_splits)
|
93 |
return vector_db, "Database created!"
|
94 |
|
95 |
-
# Initialize LLM
|
96 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
97 |
-
# print("llm_option",llm_option)
|
98 |
llm_name = list_llm[llm_option]
|
99 |
print("llm_name: ",llm_name)
|
100 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
101 |
return qa_chain, "QA chain initialized. Chatbot is ready!"
|
102 |
|
103 |
-
|
104 |
def format_chat_history(message, chat_history):
|
105 |
formatted_chat_history = []
|
106 |
for user_message, bot_message in chat_history:
|
107 |
formatted_chat_history.append(f"User: {user_message}")
|
108 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
109 |
return formatted_chat_history
|
110 |
-
|
111 |
|
112 |
def conversation(qa_chain, message, history):
|
113 |
formatted_chat_history = format_chat_history(message, history)
|
114 |
-
# Generate response using QA chain
|
115 |
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
|
116 |
response_answer = response["answer"]
|
117 |
if response_answer.find("Helpful Answer:") != -1:
|
@@ -120,14 +96,11 @@ def conversation(qa_chain, message, history):
|
|
120 |
response_source1 = response_sources[0].page_content.strip()
|
121 |
response_source2 = response_sources[1].page_content.strip()
|
122 |
response_source3 = response_sources[2].page_content.strip()
|
123 |
-
# Langchain sources are zero-based
|
124 |
response_source1_page = response_sources[0].metadata["page"] + 1
|
125 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
126 |
response_source3_page = response_sources[2].metadata["page"] + 1
|
127 |
-
# Append user message and response to chat history
|
128 |
new_history = history + [(message, response_answer)]
|
129 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
130 |
-
|
131 |
|
132 |
def upload_file(file_obj):
|
133 |
list_file_path = []
|
@@ -136,10 +109,15 @@ def upload_file(file_obj):
|
|
136 |
list_file_path.append(file_path)
|
137 |
return list_file_path
|
138 |
|
139 |
-
|
140 |
def demo():
|
141 |
-
#
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
vector_db = gr.State()
|
144 |
qa_chain = gr.State()
|
145 |
gr.HTML("<center><h1>RAG PDF chatbot</h1><center>")
|
@@ -154,10 +132,10 @@ def demo():
|
|
154 |
with gr.Row():
|
155 |
db_btn = gr.Button("Create vector database")
|
156 |
with gr.Row():
|
157 |
-
|
158 |
gr.Markdown("<style>body { font-size: 16px; }</style><b>Select Large Language Model (LLM) and input parameters</b>")
|
159 |
with gr.Row():
|
160 |
-
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value = list_llm_simple[0], type="index")
|
161 |
with gr.Row():
|
162 |
with gr.Accordion("LLM input parameters", open=False):
|
163 |
with gr.Row():
|
@@ -165,11 +143,11 @@ def demo():
|
|
165 |
with gr.Row():
|
166 |
slider_maxtokens = gr.Slider(minimum = 128, maximum = 9192, value=4096, step=128, label="Max New Tokens", info="Maximum number of tokens to be generated",interactive=True)
|
167 |
with gr.Row():
|
168 |
-
|
169 |
with gr.Row():
|
170 |
qachain_btn = gr.Button("Initialize Question Answering Chatbot")
|
171 |
with gr.Row():
|
172 |
-
|
173 |
|
174 |
with gr.Column(scale = 200):
|
175 |
gr.Markdown("<b>Step 2 - Chat with your Document</b>")
|
@@ -190,32 +168,31 @@ def demo():
|
|
190 |
submit_btn = gr.Button("Submit")
|
191 |
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
|
192 |
|
193 |
-
#
|
194 |
-
db_btn.click(initialize_database,
|
195 |
-
inputs=[document],
|
196 |
outputs=[vector_db, db_progress])
|
197 |
-
qachain_btn.click(initialize_LLM,
|
198 |
-
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
|
199 |
-
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0],
|
200 |
-
inputs=None,
|
201 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
202 |
queue=False)
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
208 |
queue=False)
|
209 |
-
submit_btn.click(conversation,
|
210 |
-
inputs=[qa_chain, msg, chatbot],
|
211 |
-
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
212 |
queue=False)
|
213 |
-
clear_btn.click(lambda:[None,"",0,"",0,"",0],
|
214 |
-
inputs=None,
|
215 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
216 |
queue=False)
|
217 |
-
demo.queue().launch(debug=True)
|
218 |
|
|
|
219 |
|
220 |
if __name__ == "__main__":
|
221 |
demo()
|
|
|
2 |
import os
|
3 |
api_token = os.getenv("HF_TOKEN")
|
4 |
|
|
|
5 |
from langchain_community.vectorstores import FAISS
|
6 |
from langchain_community.document_loaders import PyPDFLoader
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
14 |
from langchain_community.llms import HuggingFaceEndpoint
|
15 |
import torch
|
16 |
|
17 |
+
# Added Deepseek model to the list
|
18 |
+
list_llm = [
|
19 |
+
"meta-llama/Meta-Llama-3-8B-Instruct",
|
20 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
21 |
+
"deepseek-ai/deepseek-llm-7b-chat"
|
22 |
+
]
|
23 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
24 |
|
25 |
+
# Rest of the functions remain the same until demo()
|
26 |
def load_doc(list_file_path):
|
|
|
|
|
|
|
27 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
28 |
pages = []
|
29 |
for loader in loaders:
|
|
|
35 |
doc_splits = text_splitter.split_documents(pages)
|
36 |
return doc_splits
|
37 |
|
|
|
38 |
def create_db(splits):
|
39 |
embeddings = HuggingFaceEmbeddings()
|
40 |
vectordb = FAISS.from_documents(splits, embeddings)
|
41 |
return vectordb
|
42 |
|
|
|
|
|
|
|
|
|
|
|
43 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
44 |
+
llm = HuggingFaceEndpoint(
|
45 |
+
repo_id=llm_model,
|
46 |
+
huggingfacehub_api_token=api_token,
|
47 |
+
temperature=temperature,
|
48 |
+
max_new_tokens=max_tokens,
|
49 |
+
top_k=top_k,
|
50 |
+
task="text-generation"
|
51 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
memory = ConversationBufferMemory(
|
54 |
memory_key="chat_history",
|
|
|
66 |
verbose=False,
|
67 |
)
|
68 |
return qa_chain
|
69 |
+
|
|
|
70 |
def initialize_database(list_file_obj, progress=gr.Progress()):
|
|
|
71 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
|
|
72 |
doc_splits = load_doc(list_file_path)
|
|
|
73 |
vector_db = create_db(doc_splits)
|
74 |
return vector_db, "Database created!"
|
75 |
|
|
|
76 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
|
|
77 |
llm_name = list_llm[llm_option]
|
78 |
print("llm_name: ",llm_name)
|
79 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
80 |
return qa_chain, "QA chain initialized. Chatbot is ready!"
|
81 |
|
|
|
82 |
def format_chat_history(message, chat_history):
|
83 |
formatted_chat_history = []
|
84 |
for user_message, bot_message in chat_history:
|
85 |
formatted_chat_history.append(f"User: {user_message}")
|
86 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
87 |
return formatted_chat_history
|
|
|
88 |
|
89 |
def conversation(qa_chain, message, history):
|
90 |
formatted_chat_history = format_chat_history(message, history)
|
|
|
91 |
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
|
92 |
response_answer = response["answer"]
|
93 |
if response_answer.find("Helpful Answer:") != -1:
|
|
|
96 |
response_source1 = response_sources[0].page_content.strip()
|
97 |
response_source2 = response_sources[1].page_content.strip()
|
98 |
response_source3 = response_sources[2].page_content.strip()
|
|
|
99 |
response_source1_page = response_sources[0].metadata["page"] + 1
|
100 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
101 |
response_source3_page = response_sources[2].metadata["page"] + 1
|
|
|
102 |
new_history = history + [(message, response_answer)]
|
103 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
|
|
104 |
|
105 |
def upload_file(file_obj):
|
106 |
list_file_path = []
|
|
|
109 |
list_file_path.append(file_path)
|
110 |
return list_file_path
|
111 |
|
|
|
112 |
def demo():
|
113 |
+
# Modified theme to use dark blue colors
|
114 |
+
theme = gr.themes.Default(
|
115 |
+
primary_hue="indigo",
|
116 |
+
secondary_hue="blue",
|
117 |
+
neutral_hue="slate"
|
118 |
+
)
|
119 |
+
|
120 |
+
with gr.Blocks(theme=theme) as demo:
|
121 |
vector_db = gr.State()
|
122 |
qa_chain = gr.State()
|
123 |
gr.HTML("<center><h1>RAG PDF chatbot</h1><center>")
|
|
|
132 |
with gr.Row():
|
133 |
db_btn = gr.Button("Create vector database")
|
134 |
with gr.Row():
|
135 |
+
db_progress = gr.Textbox(value="Not initialized", show_label=False)
|
136 |
gr.Markdown("<style>body { font-size: 16px; }</style><b>Select Large Language Model (LLM) and input parameters</b>")
|
137 |
with gr.Row():
|
138 |
+
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value = list_llm_simple[0], type="index")
|
139 |
with gr.Row():
|
140 |
with gr.Accordion("LLM input parameters", open=False):
|
141 |
with gr.Row():
|
|
|
143 |
with gr.Row():
|
144 |
slider_maxtokens = gr.Slider(minimum = 128, maximum = 9192, value=4096, step=128, label="Max New Tokens", info="Maximum number of tokens to be generated",interactive=True)
|
145 |
with gr.Row():
|
146 |
+
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k", info="Number of tokens to select the next token from", interactive=True)
|
147 |
with gr.Row():
|
148 |
qachain_btn = gr.Button("Initialize Question Answering Chatbot")
|
149 |
with gr.Row():
|
150 |
+
llm_progress = gr.Textbox(value="Not initialized", show_label=False)
|
151 |
|
152 |
with gr.Column(scale = 200):
|
153 |
gr.Markdown("<b>Step 2 - Chat with your Document</b>")
|
|
|
168 |
submit_btn = gr.Button("Submit")
|
169 |
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
|
170 |
|
171 |
+
# Event handlers
|
172 |
+
db_btn.click(initialize_database,
|
173 |
+
inputs=[document],
|
174 |
outputs=[vector_db, db_progress])
|
175 |
+
qachain_btn.click(initialize_LLM,
|
176 |
+
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
|
177 |
+
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0],
|
178 |
+
inputs=None,
|
179 |
+
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
180 |
queue=False)
|
181 |
|
182 |
+
msg.submit(conversation,
|
183 |
+
inputs=[qa_chain, msg, chatbot],
|
184 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
|
|
185 |
queue=False)
|
186 |
+
submit_btn.click(conversation,
|
187 |
+
inputs=[qa_chain, msg, chatbot],
|
188 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
189 |
queue=False)
|
190 |
+
clear_btn.click(lambda:[None,"",0,"",0,"",0],
|
191 |
+
inputs=None,
|
192 |
+
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
193 |
queue=False)
|
|
|
194 |
|
195 |
+
demo.queue().launch(debug=True)
|
196 |
|
197 |
if __name__ == "__main__":
|
198 |
demo()
|