Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,35 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import torch
|
4 |
-
from langchain_community.vectorstores import FAISS
|
5 |
from langchain_community.document_loaders import PyPDFLoader
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
-
from langchain_community.vectorstores import Chroma
|
8 |
from langchain.chains import ConversationalRetrievalChain
|
9 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
10 |
-
from langchain_community.llms import HuggingFacePipeline
|
11 |
-
from langchain.chains import ConversationChain
|
12 |
-
from langchain.memory import ConversationBufferMemory
|
13 |
from langchain_community.llms import HuggingFaceEndpoint
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
api_token = os.getenv("FirstToken")
|
16 |
|
17 |
# Available LLM models
|
18 |
list_llm = [
|
19 |
-
"meta-llama/Meta-Llama-3-8B-Instruct",
|
20 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
21 |
"deepseek-ai/deepseek-llm-7b-chat"
|
22 |
-
]
|
23 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
24 |
|
|
|
|
|
|
|
25 |
def load_doc(list_file_path):
|
26 |
-
"""Load and split PDF documents into chunks"""
|
27 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
28 |
pages = []
|
29 |
for loader in loaders:
|
@@ -35,14 +41,92 @@ def load_doc(list_file_path):
|
|
35 |
doc_splits = text_splitter.split_documents(pages)
|
36 |
return doc_splits
|
37 |
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
embeddings = HuggingFaceEmbeddings()
|
41 |
-
|
42 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
46 |
llm = HuggingFaceEndpoint(
|
47 |
repo_id=llm_model,
|
48 |
huggingfacehub_api_token=api_token,
|
@@ -51,14 +135,13 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
51 |
top_k=top_k,
|
52 |
task="text-generation"
|
53 |
)
|
54 |
-
|
55 |
memory = ConversationBufferMemory(
|
56 |
memory_key="chat_history",
|
57 |
output_key='answer',
|
58 |
return_messages=True
|
59 |
)
|
60 |
|
61 |
-
retriever = vector_db.as_retriever()
|
62 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
63 |
llm,
|
64 |
retriever=retriever,
|
@@ -69,35 +152,50 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
69 |
)
|
70 |
return qa_chain
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
return vector_db, "Database created successfully!"
|
78 |
-
|
79 |
-
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
80 |
-
"""Initialize the Language Model"""
|
81 |
llm_name = list_llm[llm_option]
|
82 |
print("Selected LLM model:", llm_name)
|
83 |
-
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k,
|
84 |
return qa_chain, "Analysis Assistant initialized and ready!"
|
85 |
|
|
|
|
|
|
|
86 |
def format_chat_history(message, chat_history):
|
87 |
-
"""Format chat history for the model"""
|
88 |
formatted_chat_history = []
|
89 |
for user_message, bot_message in chat_history:
|
90 |
formatted_chat_history.append(f"User: {user_message}")
|
91 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
92 |
return formatted_chat_history
|
93 |
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
formatted_chat_history = format_chat_history(message, history)
|
97 |
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
|
98 |
response_answer = response["answer"]
|
|
|
|
|
|
|
|
|
|
|
99 |
if response_answer.find("Helpful Answer:") != -1:
|
100 |
response_answer = response_answer.split("Helpful Answer:")[-1]
|
|
|
101 |
response_sources = response["source_documents"]
|
102 |
response_source1 = response_sources[0].page_content.strip()
|
103 |
response_source2 = response_sources[1].page_content.strip()
|
@@ -106,19 +204,20 @@ def conversation(qa_chain, message, history):
|
|
106 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
107 |
response_source3_page = response_sources[2].metadata["page"] + 1
|
108 |
new_history = history + [(message, response_answer)]
|
109 |
-
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
110 |
|
|
|
111 |
|
112 |
-
#
|
113 |
-
|
|
|
114 |
def demo():
|
115 |
-
"""Main demo application with enhanced layout"""
|
116 |
theme = gr.themes.Default(
|
117 |
primary_hue="indigo",
|
118 |
secondary_hue="blue",
|
119 |
neutral_hue="slate",
|
120 |
)
|
121 |
-
|
122 |
# Custom CSS for advanced layout
|
123 |
custom_css = """
|
124 |
.container {background: #ffffff; padding: 1rem; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1);}
|
@@ -129,12 +228,12 @@ def demo():
|
|
129 |
.control-panel {margin-bottom: 1rem;}
|
130 |
.chat-area {background: white; padding: 1rem; border-radius: 8px;}
|
131 |
"""
|
132 |
-
|
133 |
with gr.Blocks(theme=theme, css=custom_css) as demo:
|
134 |
-
|
135 |
qa_chain = gr.State()
|
136 |
-
language = gr.State(value="en") #
|
137 |
-
|
138 |
# Header
|
139 |
gr.HTML(
|
140 |
"""
|
@@ -144,12 +243,12 @@ def demo():
|
|
144 |
</div>
|
145 |
"""
|
146 |
)
|
147 |
-
|
148 |
with gr.Row():
|
149 |
# Left Column - Controls
|
150 |
with gr.Column(scale=1):
|
151 |
gr.Markdown("## Document Processing")
|
152 |
-
|
153 |
# File Upload Section
|
154 |
with gr.Column(elem_classes="section"):
|
155 |
gr.Markdown("### 📄 Upload Documents")
|
@@ -163,7 +262,7 @@ def demo():
|
|
163 |
value="Ready for documents",
|
164 |
label="Processing Status"
|
165 |
)
|
166 |
-
|
167 |
# Model Selection Section
|
168 |
with gr.Column(elem_classes="section"):
|
169 |
gr.Markdown("### 🤖 Model Configuration")
|
@@ -173,15 +272,15 @@ def demo():
|
|
173 |
value=list_llm_simple[0],
|
174 |
type="index"
|
175 |
)
|
176 |
-
|
177 |
-
#
|
178 |
language_btn = gr.Radio(
|
179 |
choices=["English", "Português"],
|
180 |
label="Response Language",
|
181 |
value="English",
|
182 |
type="value"
|
183 |
)
|
184 |
-
|
185 |
with gr.Accordion("Advanced Settings", open=False):
|
186 |
slider_temperature = gr.Slider(
|
187 |
minimum=0.01,
|
@@ -204,17 +303,17 @@ def demo():
|
|
204 |
step=1,
|
205 |
label="Analysis Diversity"
|
206 |
)
|
207 |
-
|
208 |
qachain_btn = gr.Button("Initialize Assistant")
|
209 |
llm_progress = gr.Textbox(
|
210 |
value="Not initialized",
|
211 |
label="Assistant Status"
|
212 |
)
|
213 |
-
|
214 |
# Right Column - Chat Interface
|
215 |
with gr.Column(scale=2):
|
216 |
gr.Markdown("## Interactive Analysis")
|
217 |
-
|
218 |
# Features Section
|
219 |
with gr.Row():
|
220 |
with gr.Column():
|
@@ -235,7 +334,7 @@ def demo():
|
|
235 |
- Specify standards
|
236 |
"""
|
237 |
)
|
238 |
-
|
239 |
# Chat Interface
|
240 |
with gr.Column(elem_classes="chat-area"):
|
241 |
chatbot = gr.Chatbot(
|
@@ -252,7 +351,7 @@ def demo():
|
|
252 |
[msg, chatbot],
|
253 |
value="Clear"
|
254 |
)
|
255 |
-
|
256 |
# References Section
|
257 |
with gr.Accordion("Document References", open=False):
|
258 |
with gr.Row():
|
@@ -271,10 +370,10 @@ def demo():
|
|
271 |
"""
|
272 |
---
|
273 |
### About MetroAssist AI
|
274 |
-
|
275 |
-
A specialized tool for metrology professionals, providing advanced analysis
|
276 |
of calibration certificates, measurement data, and technical standards compliance.
|
277 |
-
|
278 |
**Version 1.0** | © 2024 MetroAssist AI
|
279 |
"""
|
280 |
)
|
@@ -285,16 +384,16 @@ def demo():
|
|
285 |
inputs=language_btn,
|
286 |
outputs=language
|
287 |
)
|
288 |
-
|
289 |
db_btn.click(
|
290 |
initialize_database,
|
291 |
inputs=[document],
|
292 |
-
outputs=[
|
293 |
)
|
294 |
-
|
295 |
qachain_btn.click(
|
296 |
initialize_LLM,
|
297 |
-
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk,
|
298 |
outputs=[qa_chain, llm_progress]
|
299 |
).then(
|
300 |
lambda: [None, "", 0, "", 0, "", 0],
|
@@ -309,14 +408,14 @@ def demo():
|
|
309 |
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
310 |
queue=False
|
311 |
)
|
312 |
-
|
313 |
submit_btn.click(
|
314 |
conversation,
|
315 |
inputs=[qa_chain, msg, chatbot, language],
|
316 |
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
317 |
queue=False
|
318 |
)
|
319 |
-
|
320 |
clear_btn.click(
|
321 |
lambda: [None, "", 0, "", 0, "", 0],
|
322 |
inputs=None,
|
@@ -326,36 +425,5 @@ def demo():
|
|
326 |
|
327 |
demo.queue().launch(debug=True)
|
328 |
|
329 |
-
# Modifique a função de conversão para incluir o idioma
|
330 |
-
def conversation(qa_chain, message, history, lang):
|
331 |
-
"""Handle conversation and document analysis"""
|
332 |
-
# Adicione instrução de idioma à mensagem
|
333 |
-
if lang == "pt":
|
334 |
-
message += " (Responda em Português)"
|
335 |
-
else:
|
336 |
-
message += " (Respond in English)"
|
337 |
-
|
338 |
-
formatted_chat_history = format_chat_history(message, history)
|
339 |
-
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
|
340 |
-
response_answer = response["answer"]
|
341 |
-
|
342 |
-
# Remova a instrução de idioma do histórico do chat
|
343 |
-
if "(Respond" in message:
|
344 |
-
message = message.split(" (Respond")[0]
|
345 |
-
|
346 |
-
if response_answer.find("Helpful Answer:") != -1:
|
347 |
-
response_answer = response_answer.split("Helpful Answer:")[-1]
|
348 |
-
|
349 |
-
response_sources = response["source_documents"]
|
350 |
-
response_source1 = response_sources[0].page_content.strip()
|
351 |
-
response_source2 = response_sources[1].page_content.strip()
|
352 |
-
response_source3 = response_sources[2].page_content.strip()
|
353 |
-
response_source1_page = response_sources[0].metadata["page"] + 1
|
354 |
-
response_source2_page = response_sources[1].metadata["page"] + 1
|
355 |
-
response_source3_page = response_sources[2].metadata["page"] + 1
|
356 |
-
new_history = history + [(message, response_answer)]
|
357 |
-
|
358 |
-
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
359 |
-
|
360 |
if __name__ == "__main__":
|
361 |
-
demo()
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import torch
|
4 |
+
from langchain_community.vectorstores import FAISS, Chroma
|
5 |
from langchain_community.document_loaders import PyPDFLoader
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
|
|
|
|
9 |
from langchain_community.llms import HuggingFaceEndpoint
|
10 |
+
from langchain.memory import ConversationBufferMemory
|
11 |
+
from langchain.retrievers import BM25Retriever, EnsembleRetriever
|
12 |
+
from langchain.chains.query_constructor.base import AttributeInfo
|
13 |
+
from langchain.chains import create_query_chain
|
14 |
+
from langchain.retrievers.self_query.base import SelfQueryRetriever
|
15 |
+
from langchain.chains.query_constructor.schema import FieldInfo
|
16 |
+
from langchain.retrievers.multi_query import MultiQueryRetriever
|
17 |
|
18 |
api_token = os.getenv("FirstToken")
|
19 |
|
20 |
# Available LLM models
|
21 |
list_llm = [
|
22 |
+
"meta-llama/Meta-Llama-3-8B-Instruct",
|
23 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
24 |
"deepseek-ai/deepseek-llm-7b-chat"
|
25 |
+
]
|
26 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
27 |
|
28 |
+
# -----------------------------------------------------------------------------
|
29 |
+
# Document Loading and Splitting
|
30 |
+
# -----------------------------------------------------------------------------
|
31 |
def load_doc(list_file_path):
|
32 |
+
"""Load and split PDF documents into chunks."""
|
33 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
34 |
pages = []
|
35 |
for loader in loaders:
|
|
|
41 |
doc_splits = text_splitter.split_documents(pages)
|
42 |
return doc_splits
|
43 |
|
44 |
+
# -----------------------------------------------------------------------------
|
45 |
+
# Vector Database Creation (ChromaDB and FAISS)
|
46 |
+
# -----------------------------------------------------------------------------
|
47 |
+
def create_chromadb(splits, persist_directory="chroma_db"):
|
48 |
+
"""Create ChromaDB vector database from document splits."""
|
49 |
+
embeddings = HuggingFaceEmbeddings()
|
50 |
+
chromadb = Chroma.from_documents(
|
51 |
+
documents=splits,
|
52 |
+
embedding=embeddings,
|
53 |
+
persist_directory=persist_directory
|
54 |
+
)
|
55 |
+
chromadb.persist() # Ensure data is written to disk
|
56 |
+
return chromadb
|
57 |
+
|
58 |
+
def create_faissdb(splits):
|
59 |
+
"""Create FAISS vector database from document splits."""
|
60 |
embeddings = HuggingFaceEmbeddings()
|
61 |
+
faissdb = FAISS.from_documents(splits, embeddings)
|
62 |
+
return faissdb
|
63 |
+
|
64 |
+
# -----------------------------------------------------------------------------
|
65 |
+
# BM25 Retriever
|
66 |
+
# -----------------------------------------------------------------------------
|
67 |
+
def create_bm25_retriever(splits):
|
68 |
+
"""Create BM25 retriever from document splits."""
|
69 |
+
bm25_retriever = BM25Retriever.from_documents(splits)
|
70 |
+
bm25_retriever.k = 3 # Number of documents to retrieve
|
71 |
+
return bm25_retriever
|
72 |
+
|
73 |
+
# -----------------------------------------------------------------------------
|
74 |
+
# MultiQueryRetriever
|
75 |
+
# -----------------------------------------------------------------------------
|
76 |
+
def create_multi_query_retriever(llm, vector_db, num_queries=3):
|
77 |
+
"""
|
78 |
+
Create a MultiQueryRetriever.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
llm: The language model to use for query generation.
|
82 |
+
vector_db: The vector database to retrieve from.
|
83 |
+
num_queries: The number of diverse queries to generate.
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
A MultiQueryRetriever instance.
|
87 |
+
"""
|
88 |
+
retriever = MultiQueryRetriever.from_llm(
|
89 |
+
llm=llm, retriever=vector_db.as_retriever(),
|
90 |
+
output_key="answer",
|
91 |
+
memory_key="chat_history",
|
92 |
+
return_messages=True,
|
93 |
+
verbose=False
|
94 |
+
)
|
95 |
+
return retriever
|
96 |
+
|
97 |
+
# -----------------------------------------------------------------------------
|
98 |
+
# Ensemble Retriever (Combine VectorDB and BM25)
|
99 |
+
# -----------------------------------------------------------------------------
|
100 |
+
def create_ensemble_retriever(vector_db, bm25_retriever):
|
101 |
+
"""Create an ensemble retriever combining ChromaDB and BM25."""
|
102 |
+
ensemble_retriever = EnsembleRetriever(
|
103 |
+
retrievers=[vector_db.as_retriever(), bm25_retriever],
|
104 |
+
weights=[0.7, 0.3] # Adjust weights as needed
|
105 |
+
)
|
106 |
+
return ensemble_retriever
|
107 |
+
|
108 |
+
# -----------------------------------------------------------------------------
|
109 |
+
# Initialize Database
|
110 |
+
# -----------------------------------------------------------------------------
|
111 |
+
def initialize_database(list_file_obj, progress=gr.Progress()):
|
112 |
+
"""Initialize the document database."""
|
113 |
+
list_file_path = [x.name for x in list_file_obj if x is not None]
|
114 |
+
doc_splits = load_doc(list_file_path)
|
115 |
+
|
116 |
+
# Create vector databases and retrievers
|
117 |
+
chromadb = create_chromadb(doc_splits)
|
118 |
+
bm25_retriever = create_bm25_retriever(doc_splits)
|
119 |
+
|
120 |
+
# Create ensemble retriever
|
121 |
+
ensemble_retriever = create_ensemble_retriever(chromadb, bm25_retriever)
|
122 |
|
123 |
+
return ensemble_retriever, "Database created successfully!"
|
124 |
+
|
125 |
+
# -----------------------------------------------------------------------------
|
126 |
+
# Initialize LLM Chain
|
127 |
+
# -----------------------------------------------------------------------------
|
128 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, retriever, progress=gr.Progress()):
|
129 |
+
"""Initialize the language model chain."""
|
130 |
llm = HuggingFaceEndpoint(
|
131 |
repo_id=llm_model,
|
132 |
huggingfacehub_api_token=api_token,
|
|
|
135 |
top_k=top_k,
|
136 |
task="text-generation"
|
137 |
)
|
138 |
+
|
139 |
memory = ConversationBufferMemory(
|
140 |
memory_key="chat_history",
|
141 |
output_key='answer',
|
142 |
return_messages=True
|
143 |
)
|
144 |
|
|
|
145 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
146 |
llm,
|
147 |
retriever=retriever,
|
|
|
152 |
)
|
153 |
return qa_chain
|
154 |
|
155 |
+
# -----------------------------------------------------------------------------
|
156 |
+
# Initialize LLM
|
157 |
+
# -----------------------------------------------------------------------------
|
158 |
+
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, retriever, progress=gr.Progress()):
|
159 |
+
"""Initialize the Language Model."""
|
|
|
|
|
|
|
|
|
160 |
llm_name = list_llm[llm_option]
|
161 |
print("Selected LLM model:", llm_name)
|
162 |
+
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, retriever, progress)
|
163 |
return qa_chain, "Analysis Assistant initialized and ready!"
|
164 |
|
165 |
+
# -----------------------------------------------------------------------------
|
166 |
+
# Chat History Formatting
|
167 |
+
# -----------------------------------------------------------------------------
|
168 |
def format_chat_history(message, chat_history):
|
169 |
+
"""Format chat history for the model."""
|
170 |
formatted_chat_history = []
|
171 |
for user_message, bot_message in chat_history:
|
172 |
formatted_chat_history.append(f"User: {user_message}")
|
173 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
174 |
return formatted_chat_history
|
175 |
|
176 |
+
# -----------------------------------------------------------------------------
|
177 |
+
# Conversation Function
|
178 |
+
# -----------------------------------------------------------------------------
|
179 |
+
def conversation(qa_chain, message, history, lang):
|
180 |
+
"""Handle conversation and document analysis."""
|
181 |
+
|
182 |
+
# Add language instruction to the message
|
183 |
+
if lang == "pt":
|
184 |
+
message += " (Responda em Português)"
|
185 |
+
else:
|
186 |
+
message += " (Respond in English)"
|
187 |
+
|
188 |
formatted_chat_history = format_chat_history(message, history)
|
189 |
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
|
190 |
response_answer = response["answer"]
|
191 |
+
|
192 |
+
# Remove the language instruction from the chat history
|
193 |
+
if "(Respond" in message:
|
194 |
+
message = message.split(" (Respond")[0]
|
195 |
+
|
196 |
if response_answer.find("Helpful Answer:") != -1:
|
197 |
response_answer = response_answer.split("Helpful Answer:")[-1]
|
198 |
+
|
199 |
response_sources = response["source_documents"]
|
200 |
response_source1 = response_sources[0].page_content.strip()
|
201 |
response_source2 = response_sources[1].page_content.strip()
|
|
|
204 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
205 |
response_source3_page = response_sources[2].metadata["page"] + 1
|
206 |
new_history = history + [(message, response_answer)]
|
|
|
207 |
|
208 |
+
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
209 |
|
210 |
+
# -----------------------------------------------------------------------------
|
211 |
+
# Gradio Demo
|
212 |
+
# -----------------------------------------------------------------------------
|
213 |
def demo():
|
214 |
+
"""Main demo application with enhanced layout."""
|
215 |
theme = gr.themes.Default(
|
216 |
primary_hue="indigo",
|
217 |
secondary_hue="blue",
|
218 |
neutral_hue="slate",
|
219 |
)
|
220 |
+
|
221 |
# Custom CSS for advanced layout
|
222 |
custom_css = """
|
223 |
.container {background: #ffffff; padding: 1rem; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1);}
|
|
|
228 |
.control-panel {margin-bottom: 1rem;}
|
229 |
.chat-area {background: white; padding: 1rem; border-radius: 8px;}
|
230 |
"""
|
231 |
+
|
232 |
with gr.Blocks(theme=theme, css=custom_css) as demo:
|
233 |
+
retriever = gr.State()
|
234 |
qa_chain = gr.State()
|
235 |
+
language = gr.State(value="en") # State for language control
|
236 |
+
|
237 |
# Header
|
238 |
gr.HTML(
|
239 |
"""
|
|
|
243 |
</div>
|
244 |
"""
|
245 |
)
|
246 |
+
|
247 |
with gr.Row():
|
248 |
# Left Column - Controls
|
249 |
with gr.Column(scale=1):
|
250 |
gr.Markdown("## Document Processing")
|
251 |
+
|
252 |
# File Upload Section
|
253 |
with gr.Column(elem_classes="section"):
|
254 |
gr.Markdown("### 📄 Upload Documents")
|
|
|
262 |
value="Ready for documents",
|
263 |
label="Processing Status"
|
264 |
)
|
265 |
+
|
266 |
# Model Selection Section
|
267 |
with gr.Column(elem_classes="section"):
|
268 |
gr.Markdown("### 🤖 Model Configuration")
|
|
|
272 |
value=list_llm_simple[0],
|
273 |
type="index"
|
274 |
)
|
275 |
+
|
276 |
+
# Language selection button
|
277 |
language_btn = gr.Radio(
|
278 |
choices=["English", "Português"],
|
279 |
label="Response Language",
|
280 |
value="English",
|
281 |
type="value"
|
282 |
)
|
283 |
+
|
284 |
with gr.Accordion("Advanced Settings", open=False):
|
285 |
slider_temperature = gr.Slider(
|
286 |
minimum=0.01,
|
|
|
303 |
step=1,
|
304 |
label="Analysis Diversity"
|
305 |
)
|
306 |
+
|
307 |
qachain_btn = gr.Button("Initialize Assistant")
|
308 |
llm_progress = gr.Textbox(
|
309 |
value="Not initialized",
|
310 |
label="Assistant Status"
|
311 |
)
|
312 |
+
|
313 |
# Right Column - Chat Interface
|
314 |
with gr.Column(scale=2):
|
315 |
gr.Markdown("## Interactive Analysis")
|
316 |
+
|
317 |
# Features Section
|
318 |
with gr.Row():
|
319 |
with gr.Column():
|
|
|
334 |
- Specify standards
|
335 |
"""
|
336 |
)
|
337 |
+
|
338 |
# Chat Interface
|
339 |
with gr.Column(elem_classes="chat-area"):
|
340 |
chatbot = gr.Chatbot(
|
|
|
351 |
[msg, chatbot],
|
352 |
value="Clear"
|
353 |
)
|
354 |
+
|
355 |
# References Section
|
356 |
with gr.Accordion("Document References", open=False):
|
357 |
with gr.Row():
|
|
|
370 |
"""
|
371 |
---
|
372 |
### About MetroAssist AI
|
373 |
+
|
374 |
+
A specialized tool for metrology professionals, providing advanced analysis
|
375 |
of calibration certificates, measurement data, and technical standards compliance.
|
376 |
+
|
377 |
**Version 1.0** | © 2024 MetroAssist AI
|
378 |
"""
|
379 |
)
|
|
|
384 |
inputs=language_btn,
|
385 |
outputs=language
|
386 |
)
|
387 |
+
|
388 |
db_btn.click(
|
389 |
initialize_database,
|
390 |
inputs=[document],
|
391 |
+
outputs=[retriever, db_progress]
|
392 |
)
|
393 |
+
|
394 |
qachain_btn.click(
|
395 |
initialize_LLM,
|
396 |
+
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, retriever],
|
397 |
outputs=[qa_chain, llm_progress]
|
398 |
).then(
|
399 |
lambda: [None, "", 0, "", 0, "", 0],
|
|
|
408 |
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
409 |
queue=False
|
410 |
)
|
411 |
+
|
412 |
submit_btn.click(
|
413 |
conversation,
|
414 |
inputs=[qa_chain, msg, chatbot, language],
|
415 |
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
416 |
queue=False
|
417 |
)
|
418 |
+
|
419 |
clear_btn.click(
|
420 |
lambda: [None, "", 0, "", 0, "", 0],
|
421 |
inputs=None,
|
|
|
425 |
|
426 |
demo.queue().launch(debug=True)
|
427 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
428 |
if __name__ == "__main__":
|
429 |
+
demo()
|