Spaces:
Running
Running
File size: 6,672 Bytes
5ae02e5 23dd469 5ae02e5 23dd469 a58afc9 388fe1b a58afc9 5ae02e5 a58afc9 2a6eab9 aa1a596 a58afc9 aa1a596 a58afc9 6418068 a58afc9 5ae02e5 6418068 a58afc9 2a6eab9 6418068 23dd469 a58afc9 2a6eab9 a58afc9 6418068 23dd469 a58afc9 6418068 23dd469 a58afc9 6418068 a58afc9 2a6eab9 a58afc9 6418068 a58afc9 6418068 a58afc9 6418068 a58afc9 2a6eab9 a58afc9 2a6eab9 a58afc9 2a6eab9 6418068 a58afc9 6418068 a58afc9 2a6eab9 a58afc9 2a6eab9 a58afc9 2a6eab9 a58afc9 2a6eab9 a58afc9 aa1a596 a58afc9 aa1a596 a58afc9 aa1a596 a58afc9 2a6eab9 a58afc9 2a6eab9 388fe1b 23dd469 a58afc9 6418068 aa1a596 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import gradio as gr
import torch
import torchaudio
import numpy as np
from transformers import AutoProcessor, SeamlessM4Tv2Model
class SeamlessTranslator:
def __init__(self):
self.model_name = "facebook/seamless-m4t-v2-large"
print("Loading model...")
self.processor = AutoProcessor.from_pretrained(self.model_name)
self.model = SeamlessM4Tv2Model.from_pretrained(self.model_name)
self.sample_rate = self.model.config.sampling_rate
self.languages = {
"English": "eng",
"Spanish": "spa",
"French": "fra",
"German": "deu",
"Italian": "ita",
"Portuguese": "por",
"Russian": "rus",
"Chinese": "cmn",
"Japanese": "jpn",
"Korean": "kor"
}
def translate_text(self, text, src_lang, tgt_lang, progress=gr.Progress()):
progress(0.3, desc="Processing input...")
try:
inputs = self.processor(text=text, src_lang=self.languages[src_lang], return_tensors="pt")
progress(0.6, desc="Generating audio...")
audio_array = self.model.generate(**inputs, tgt_lang=self.languages[tgt_lang])[0].cpu().numpy().squeeze()
progress(1.0, desc="Done!")
return (self.sample_rate, audio_array)
except Exception as e:
raise gr.Error(str(e))
def translate_audio(self, audio_path, tgt_lang, progress=gr.Progress()):
progress(0.3, desc="Loading audio...")
try:
audio, orig_freq = torchaudio.load(audio_path)
audio = torchaudio.functional.resample(audio, orig_freq=orig_freq, new_freq=16000)
progress(0.6, desc="Translating...")
inputs = self.processor(audios=audio, return_tensors="pt")
audio_array = self.model.generate(**inputs, tgt_lang=self.languages[tgt_lang])[0].cpu().numpy().squeeze()
progress(1.0, desc="Done!")
return (self.sample_rate, audio_array)
except Exception as e:
raise gr.Error(str(e))
css = """
#component-0 {
max-width: 1200px;
margin: auto;
padding: 20px;
}
.container {
border-radius: 12px;
padding: 20px;
}
.gr-form {
border-color: #e5e7eb !important;
}
.gr-button {
border-radius: 8px !important;
background: linear-gradient(to right, #2563eb, #4f46e5) !important;
color: white !important;
font-weight: 600 !important;
}
.gr-button:hover {
box-shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1) !important;
transform: translateY(-1px);
}
.gr-input, .gr-select {
border-radius: 8px !important;
}
.gr-panel {
border-radius: 12px !important;
}
.title {
text-align: center;
font-size: 2.5rem;
font-weight: bold;
margin: 1rem 0;
background: linear-gradient(to right, #2563eb, #4f46e5);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.subtitle {
text-align: center;
color: #6b7280;
margin-bottom: 2rem;
}
.tab-nav {
border-bottom: 2px solid #e5e7eb;
margin-bottom: 1rem;
}
.output-label {
font-weight: 600;
color: #374151;
margin-bottom: 0.5rem;
}
.footer {
text-align: center;
margin-top: 2rem;
padding-top: 1rem;
border-top: 1px solid #e5e7eb;
color: #6b7280;
font-size: 0.875rem;
}
"""
def create_ui():
translator = SeamlessTranslator()
with gr.Blocks(css=css, title="A.R.I.S. Translator") as demo:
gr.HTML(
"""
<div class="title">A.R.I.S. Translator</div>
<div class="subtitle">Advanced Real-time Interpretation System</div>
"""
)
with gr.Tabs() as tabs:
# Text to Speech Tab
with gr.Tab("Text Translation", id=1):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Text to Translate",
placeholder="Enter your text here...",
lines=5
)
with gr.Row():
src_lang = gr.Dropdown(
choices=list(translator.languages.keys()),
value="English",
label="Source Language"
)
tgt_lang = gr.Dropdown(
choices=list(translator.languages.keys()),
value="Spanish",
label="Target Language"
)
translate_btn = gr.Button("Translate", variant="primary")
with gr.Column():
gr.HTML('<div class="output-label">Translation Output</div>')
audio_output = gr.Audio(
label="Translated Audio",
type="numpy"
)
# Audio to Speech Tab
with gr.Tab("Audio Translation", id=2):
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
label="Upload Audio",
type="filepath"
)
tgt_lang_audio = gr.Dropdown(
choices=list(translator.languages.keys()),
value="English",
label="Target Language"
)
translate_audio_btn = gr.Button("Translate Audio", variant="primary")
with gr.Column():
gr.HTML('<div class="output-label">Translation Output</div>')
audio_output_from_audio = gr.Audio(
label="Translated Audio",
type="numpy"
)
gr.HTML(
"""
<div class="footer">
Powered by Meta's SeamlessM4T model | Built with Gradio
</div>
"""
)
# Event handlers
translate_btn.click(
fn=translator.translate_text,
inputs=[text_input, src_lang, tgt_lang],
outputs=audio_output
)
translate_audio_btn.click(
fn=translator.translate_audio,
inputs=[audio_input, tgt_lang_audio],
outputs=audio_output_from_audio
)
return demo
if __name__ == "__main__":
demo = create_ui()
demo.queue()
demo.launch() |