Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,297 +1,68 @@
|
|
1 |
-
# config.py
|
2 |
-
import os
|
3 |
-
from dotenv import load_dotenv
|
4 |
-
|
5 |
-
load_dotenv()
|
6 |
-
|
7 |
-
class Config:
|
8 |
-
DEBUG = os.getenv('DEBUG', 'False').lower() == 'true'
|
9 |
-
LOG_LEVEL = os.getenv('LOG_LEVEL', 'INFO')
|
10 |
-
MODELS_CACHE_DIR = os.getenv('MODELS_CACHE_DIR', './models')
|
11 |
-
HISTORY_FILE = os.getenv('HISTORY_FILE', 'learning_path_history.json')
|
12 |
-
MAX_AUDIO_LENGTH = int(os.getenv('MAX_AUDIO_LENGTH', '600')) # seconds
|
13 |
-
MAX_TEXT_LENGTH = int(os.getenv('MAX_TEXT_LENGTH', '1000'))
|
14 |
-
SUPPORTED_AUDIO_FORMATS = ['.wav', '.mp3', '.ogg', '.flac']
|
15 |
-
|
16 |
-
# Visualization settings
|
17 |
-
MAX_TOPICS = int(os.getenv('MAX_TOPICS', '10'))
|
18 |
-
MAX_SUBTOPICS = int(os.getenv('MAX_SUBTOPICS', '5'))
|
19 |
-
FIGURE_DPI = int(os.getenv('FIGURE_DPI', '300'))
|
20 |
-
|
21 |
-
# Model settings
|
22 |
-
MODEL_TRANSCRIBER = os.getenv('MODEL_TRANSCRIBER', 'openai/whisper-base')
|
23 |
-
MODEL_GENERATOR = os.getenv('MODEL_GENERATOR', 'gpt2')
|
24 |
-
|
25 |
-
# Retry settings
|
26 |
-
MAX_RETRIES = int(os.getenv('MAX_RETRIES', '3'))
|
27 |
-
RETRY_DELAY = int(os.getenv('RETRY_DELAY', '1'))
|
28 |
-
|
29 |
-
# utils.py
|
30 |
-
import logging
|
31 |
-
import json
|
32 |
-
from typing import Dict, Any, Optional, List, Tuple
|
33 |
-
import os
|
34 |
-
from datetime import datetime
|
35 |
-
from config import Config
|
36 |
-
|
37 |
-
class Utils:
|
38 |
-
@staticmethod
|
39 |
-
def setup_logging() -> logging.Logger:
|
40 |
-
logger = logging.getLogger("LearningPathGenerator")
|
41 |
-
level = getattr(logging, Config.LOG_LEVEL)
|
42 |
-
logger.setLevel(level)
|
43 |
-
|
44 |
-
handler = logging.FileHandler("app.log")
|
45 |
-
formatter = logging.Formatter(
|
46 |
-
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
47 |
-
)
|
48 |
-
handler.setFormatter(formatter)
|
49 |
-
logger.addHandler(handler)
|
50 |
-
|
51 |
-
return logger
|
52 |
-
|
53 |
-
@staticmethod
|
54 |
-
def save_json(data: Dict[str, Any], filename: str) -> bool:
|
55 |
-
try:
|
56 |
-
with open(filename, 'w', encoding='utf-8') as f:
|
57 |
-
json.dump(data, f, ensure_ascii=False, indent=2)
|
58 |
-
return True
|
59 |
-
except Exception as e:
|
60 |
-
logging.error(f"Error saving JSON: {str(e)}")
|
61 |
-
return False
|
62 |
-
|
63 |
-
@staticmethod
|
64 |
-
def load_json(filename: str) -> Optional[Dict[str, Any]]:
|
65 |
-
try:
|
66 |
-
with open(filename, 'r', encoding='utf-8') as f:
|
67 |
-
return json.load(f)
|
68 |
-
except Exception as e:
|
69 |
-
logging.error(f"Error loading JSON: {str(e)}")
|
70 |
-
return None
|
71 |
-
|
72 |
-
@staticmethod
|
73 |
-
def extract_topics(analysis: str) -> Tuple[List[str], Dict[str, List[str]]]:
|
74 |
-
# Simple topic extraction logic - could be enhanced
|
75 |
-
topics = ["Main Topic", "Subtopic 1", "Subtopic 2"]
|
76 |
-
subtopics = {
|
77 |
-
"Main Topic": ["Detail 1", "Detail 2"],
|
78 |
-
"Subtopic 1": ["Point 1", "Point 2"],
|
79 |
-
"Subtopic 2": ["Item 1", "Item 2"]
|
80 |
-
}
|
81 |
-
return topics, subtopics
|
82 |
-
|
83 |
-
# models.py
|
84 |
-
from transformers import pipeline
|
85 |
-
import torch
|
86 |
-
from typing import Dict, Any
|
87 |
-
import logging
|
88 |
-
from config import Config
|
89 |
-
|
90 |
-
class ModelManager:
|
91 |
-
def __init__(self):
|
92 |
-
self.logger = logging.getLogger("ModelManager")
|
93 |
-
self.models: Dict[str, Any] = {}
|
94 |
-
self._initialize_models()
|
95 |
-
|
96 |
-
def _initialize_models(self):
|
97 |
-
try:
|
98 |
-
device = 0 if torch.cuda.is_available() else -1
|
99 |
-
|
100 |
-
self.models["transcriber"] = pipeline(
|
101 |
-
"automatic-speech-recognition",
|
102 |
-
model=Config.MODEL_TRANSCRIBER,
|
103 |
-
device=device
|
104 |
-
)
|
105 |
-
|
106 |
-
self.models["generator"] = pipeline(
|
107 |
-
"text-generation",
|
108 |
-
model=Config.MODEL_GENERATOR,
|
109 |
-
device=device
|
110 |
-
)
|
111 |
-
|
112 |
-
except Exception as e:
|
113 |
-
self.logger.error(f"Error initializing models: {str(e)}")
|
114 |
-
raise
|
115 |
-
|
116 |
-
def get_model(self, name: str) -> Any:
|
117 |
-
return self.models.get(name)
|
118 |
-
|
119 |
-
# main.py
|
120 |
import gradio as gr
|
121 |
-
|
122 |
-
import
|
123 |
-
from config import Config
|
124 |
-
from utils import Utils
|
125 |
-
from models import ModelManager
|
126 |
-
from visualization import Visualizer
|
127 |
-
from datetime import datetime
|
128 |
|
129 |
class LearningPathGenerator:
|
130 |
def __init__(self):
|
131 |
-
self.
|
132 |
-
|
133 |
-
self.
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
138 |
def process_audio(self,
|
139 |
audio_path: str,
|
140 |
-
|
141 |
-
difficulty: str = "intermediate",
|
142 |
-
include_resources: bool = True) -> Dict[str, Any]:
|
143 |
try:
|
144 |
-
|
145 |
-
transcription = transcriber(audio_path)["text"]
|
146 |
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
149 |
|
150 |
-
|
151 |
-
|
152 |
|
153 |
-
|
154 |
-
|
|
|
155 |
|
156 |
return {
|
157 |
"transcription": transcription,
|
158 |
-
"analysis": analysis
|
159 |
-
"mind_map": mind_map
|
160 |
}
|
161 |
-
|
162 |
except Exception as e:
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
generator: Any,
|
168 |
-
text: str,
|
169 |
-
difficulty: str,
|
170 |
-
include_resources: bool) -> str:
|
171 |
-
prompt = f"""
|
172 |
-
Based on the following text, create a detailed learning path
|
173 |
-
for {difficulty} level:
|
174 |
-
{text[:Config.MAX_TEXT_LENGTH]}
|
175 |
-
|
176 |
-
Learning path:
|
177 |
-
"""
|
178 |
-
|
179 |
-
response = generator(
|
180 |
-
prompt,
|
181 |
-
max_length=300,
|
182 |
-
num_return_sequences=1
|
183 |
-
)[0]["generated_text"]
|
184 |
-
|
185 |
-
if include_resources:
|
186 |
-
response += self._generate_resources()
|
187 |
-
|
188 |
-
return response
|
189 |
-
|
190 |
-
def _generate_resources(self) -> str:
|
191 |
-
return """
|
192 |
-
Recommended Resources:
|
193 |
-
|
194 |
-
1. Books:
|
195 |
-
- "Essential Guide"
|
196 |
-
- "Advanced Techniques"
|
197 |
-
|
198 |
-
2. Online Courses:
|
199 |
-
- Coursera: "Topic Specialization"
|
200 |
-
- edX: "Advanced Course"
|
201 |
-
|
202 |
-
3. Practical Resources:
|
203 |
-
- Interactive tutorials
|
204 |
-
- Practice exercises
|
205 |
-
- Real-world projects
|
206 |
-
"""
|
207 |
-
|
208 |
-
def _save_to_history(self, transcription: str, analysis: str, path_name: str):
|
209 |
-
history = Utils.load_json(self.history_file) or []
|
210 |
-
history.append({
|
211 |
-
"date": datetime.now().isoformat(),
|
212 |
-
"name": path_name,
|
213 |
-
"transcription": transcription,
|
214 |
-
"analysis": analysis
|
215 |
-
})
|
216 |
-
Utils.save_json(history, self.history_file)
|
217 |
-
|
218 |
-
def _error_response(self, error_msg: str) -> Dict[str, Any]:
|
219 |
-
return {
|
220 |
-
"transcription": f"Error: {error_msg}",
|
221 |
-
"analysis": "Could not generate analysis due to an error.",
|
222 |
-
"mind_map": None
|
223 |
-
}
|
224 |
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
with gr.Tab("Generate Path"):
|
235 |
-
with gr.Row():
|
236 |
-
with gr.Column(scale=2):
|
237 |
-
audio_input = gr.Audio(
|
238 |
-
type="filepath",
|
239 |
-
label="Audio Upload",
|
240 |
-
description="Record or upload an audio describing your goals"
|
241 |
-
)
|
242 |
-
|
243 |
-
with gr.Row():
|
244 |
-
path_name = gr.Textbox(
|
245 |
-
label="Path Name",
|
246 |
-
placeholder="Give your learning path a name (optional)"
|
247 |
-
)
|
248 |
-
difficulty = gr.Dropdown(
|
249 |
-
choices=["beginner", "intermediate", "advanced"],
|
250 |
-
value="intermediate",
|
251 |
-
label="Difficulty Level"
|
252 |
-
)
|
253 |
-
|
254 |
-
include_resources = gr.Checkbox(
|
255 |
-
label="Include Recommended Resources",
|
256 |
-
value=True
|
257 |
-
)
|
258 |
-
|
259 |
-
process_btn = gr.Button(
|
260 |
-
"Generate Learning Path",
|
261 |
-
variant="primary"
|
262 |
-
)
|
263 |
-
|
264 |
-
text_output = gr.Textbox(
|
265 |
-
label="Audio Transcription",
|
266 |
-
lines=4
|
267 |
-
)
|
268 |
-
|
269 |
-
analysis_output = gr.Textbox(
|
270 |
-
label="Analysis and Learning Path",
|
271 |
-
lines=10
|
272 |
-
)
|
273 |
-
|
274 |
-
mind_map_output = gr.Image(
|
275 |
-
label="Learning Path Mind Map"
|
276 |
-
)
|
277 |
-
|
278 |
-
process_btn.click(
|
279 |
-
fn=self.process_audio,
|
280 |
-
inputs=[audio_input, path_name, difficulty, include_resources],
|
281 |
-
outputs={
|
282 |
-
"transcription": text_output,
|
283 |
-
"analysis": analysis_output,
|
284 |
-
"mind_map": mind_map_output
|
285 |
-
}
|
286 |
)
|
287 |
-
|
288 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
|
290 |
if __name__ == "__main__":
|
291 |
-
|
292 |
-
|
293 |
-
app = generator.create_interface()
|
294 |
-
app.launch(debug=Config.DEBUG)
|
295 |
-
except Exception as e:
|
296 |
-
logging.error(f"Application error: {str(e)}")
|
297 |
-
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
class LearningPathGenerator:
|
6 |
def __init__(self):
|
7 |
+
self.device = 0 if torch.cuda.is_available() else -1
|
8 |
+
# Initialize models
|
9 |
+
self.transcriber = pipeline("automatic-speech-recognition",
|
10 |
+
model="openai/whisper-base",
|
11 |
+
device=self.device)
|
12 |
+
self.generator = pipeline("text-generation",
|
13 |
+
model="gpt2",
|
14 |
+
device=self.device)
|
15 |
+
|
16 |
def process_audio(self,
|
17 |
audio_path: str,
|
18 |
+
difficulty: str = "intermediate") -> dict:
|
|
|
|
|
19 |
try:
|
20 |
+
# Transcribe audio
|
21 |
+
transcription = self.transcriber(audio_path)["text"]
|
22 |
|
23 |
+
# Generate learning path
|
24 |
+
prompt = f"""
|
25 |
+
Based on the following text, create a detailed learning path
|
26 |
+
for {difficulty} level:
|
27 |
+
{transcription}
|
28 |
|
29 |
+
Learning path:
|
30 |
+
"""
|
31 |
|
32 |
+
analysis = self.generator(prompt,
|
33 |
+
max_length=300,
|
34 |
+
num_return_sequences=1)[0]["generated_text"]
|
35 |
|
36 |
return {
|
37 |
"transcription": transcription,
|
38 |
+
"analysis": analysis
|
|
|
39 |
}
|
|
|
40 |
except Exception as e:
|
41 |
+
return {
|
42 |
+
"transcription": f"Error: {str(e)}",
|
43 |
+
"analysis": "Could not generate analysis."
|
44 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
def create_interface():
|
47 |
+
app = gr.Interface(
|
48 |
+
fn=LearningPathGenerator().process_audio,
|
49 |
+
inputs=[
|
50 |
+
gr.Audio(type="filepath", label="Upload Audio"),
|
51 |
+
gr.Dropdown(
|
52 |
+
choices=["beginner", "intermediate", "advanced"],
|
53 |
+
value="intermediate",
|
54 |
+
label="Difficulty Level"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
)
|
56 |
+
],
|
57 |
+
outputs=[
|
58 |
+
gr.Textbox(label="Audio Transcription"),
|
59 |
+
gr.Textbox(label="Learning Path")
|
60 |
+
],
|
61 |
+
title="🎓 Learning Path Generator",
|
62 |
+
description="Upload an audio file describing your learning goals and receive a personalized learning path!"
|
63 |
+
)
|
64 |
+
return app
|
65 |
|
66 |
if __name__ == "__main__":
|
67 |
+
app = create_interface()
|
68 |
+
app.launch()
|
|
|
|
|
|
|
|
|
|