Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,20 +9,20 @@ class Config:
|
|
9 |
LOG_LEVEL = os.getenv('LOG_LEVEL', 'INFO')
|
10 |
MODELS_CACHE_DIR = os.getenv('MODELS_CACHE_DIR', './models')
|
11 |
HISTORY_FILE = os.getenv('HISTORY_FILE', 'learning_path_history.json')
|
12 |
-
MAX_AUDIO_LENGTH = int(os.getenv('MAX_AUDIO_LENGTH', '600')) #
|
13 |
MAX_TEXT_LENGTH = int(os.getenv('MAX_TEXT_LENGTH', '1000'))
|
14 |
SUPPORTED_AUDIO_FORMATS = ['.wav', '.mp3', '.ogg', '.flac']
|
15 |
|
16 |
-
#
|
17 |
MAX_TOPICS = int(os.getenv('MAX_TOPICS', '10'))
|
18 |
MAX_SUBTOPICS = int(os.getenv('MAX_SUBTOPICS', '5'))
|
19 |
FIGURE_DPI = int(os.getenv('FIGURE_DPI', '300'))
|
20 |
|
21 |
-
#
|
22 |
MODEL_TRANSCRIBER = os.getenv('MODEL_TRANSCRIBER', 'openai/whisper-base')
|
23 |
MODEL_GENERATOR = os.getenv('MODEL_GENERATOR', 'gpt2')
|
24 |
|
25 |
-
#
|
26 |
MAX_RETRIES = int(os.getenv('MAX_RETRIES', '3'))
|
27 |
RETRY_DELAY = int(os.getenv('RETRY_DELAY', '1'))
|
28 |
|
@@ -31,15 +31,16 @@ import logging
|
|
31 |
import json
|
32 |
from typing import Dict, Any, Optional, List, Tuple
|
33 |
import os
|
|
|
34 |
from config import Config
|
35 |
|
36 |
class Utils:
|
37 |
@staticmethod
|
38 |
def setup_logging() -> logging.Logger:
|
39 |
logger = logging.getLogger("LearningPathGenerator")
|
40 |
-
|
|
|
41 |
|
42 |
-
# Configuração do arquivo de log
|
43 |
handler = logging.FileHandler("app.log")
|
44 |
formatter = logging.Formatter(
|
45 |
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
@@ -56,7 +57,7 @@ class Utils:
|
|
56 |
json.dump(data, f, ensure_ascii=False, indent=2)
|
57 |
return True
|
58 |
except Exception as e:
|
59 |
-
logging.error(f"
|
60 |
return False
|
61 |
|
62 |
@staticmethod
|
@@ -65,56 +66,24 @@ class Utils:
|
|
65 |
with open(filename, 'r', encoding='utf-8') as f:
|
66 |
return json.load(f)
|
67 |
except Exception as e:
|
68 |
-
logging.error(f"
|
69 |
return None
|
70 |
|
71 |
-
# validators.py
|
72 |
-
import os
|
73 |
-
import soundfile as sf
|
74 |
-
from typing import Tuple, Optional
|
75 |
-
from config import Config
|
76 |
-
|
77 |
-
class Validators:
|
78 |
-
@staticmethod
|
79 |
-
def validate_audio_file(file_path: str) -> Tuple[bool, Optional[str]]:
|
80 |
-
try:
|
81 |
-
if not os.path.exists(file_path):
|
82 |
-
return False, "Arquivo não encontrado"
|
83 |
-
|
84 |
-
# Verifica extensão
|
85 |
-
ext = os.path.splitext(file_path)[1].lower()
|
86 |
-
if ext not in Config.SUPPORTED_AUDIO_FORMATS:
|
87 |
-
return False, f"Formato não suportado. Use: {Config.SUPPORTED_AUDIO_FORMATS}"
|
88 |
-
|
89 |
-
# Verifica conteúdo
|
90 |
-
data, samplerate = sf.read(file_path)
|
91 |
-
duration = len(data) / samplerate
|
92 |
-
|
93 |
-
if duration > Config.MAX_AUDIO_LENGTH:
|
94 |
-
return False, f"Áudio muito longo. Máximo: {Config.MAX_AUDIO_LENGTH}s"
|
95 |
-
|
96 |
-
return True, None
|
97 |
-
|
98 |
-
except Exception as e:
|
99 |
-
return False, f"Erro na validação: {str(e)}"
|
100 |
-
|
101 |
@staticmethod
|
102 |
-
def
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
return True, None
|
113 |
|
114 |
# models.py
|
115 |
from transformers import pipeline
|
116 |
import torch
|
117 |
-
from typing import Dict,
|
118 |
import logging
|
119 |
from config import Config
|
120 |
|
@@ -126,7 +95,6 @@ class ModelManager:
|
|
126 |
|
127 |
def _initialize_models(self):
|
128 |
try:
|
129 |
-
# Verifica GPU
|
130 |
device = 0 if torch.cuda.is_available() else -1
|
131 |
|
132 |
self.models["transcriber"] = pipeline(
|
@@ -142,82 +110,21 @@ class ModelManager:
|
|
142 |
)
|
143 |
|
144 |
except Exception as e:
|
145 |
-
self.logger.error(f"
|
146 |
raise
|
147 |
|
148 |
-
def get_model(self, name: str):
|
149 |
return self.models.get(name)
|
150 |
|
151 |
-
# visualization.py
|
152 |
-
import networkx as nx
|
153 |
-
import matplotlib.pyplot as plt
|
154 |
-
from io import BytesIO
|
155 |
-
import base64
|
156 |
-
from typing import Dict, List
|
157 |
-
from config import Config
|
158 |
-
|
159 |
-
class Visualizer:
|
160 |
-
@staticmethod
|
161 |
-
def create_mind_map(topics: List[str],
|
162 |
-
subtopics: Dict[str, List[str]]) -> Optional[str]:
|
163 |
-
try:
|
164 |
-
plt.figure(figsize=(15, 10), dpi=Config.FIGURE_DPI)
|
165 |
-
G = nx.DiGraph()
|
166 |
-
|
167 |
-
# Adiciona nós e arestas
|
168 |
-
for i, topic in enumerate(topics[:Config.MAX_TOPICS]):
|
169 |
-
G.add_node(topic, level=i)
|
170 |
-
|
171 |
-
if topic in subtopics:
|
172 |
-
for subtopic in subtopics[topic][:Config.MAX_SUBTOPICS]:
|
173 |
-
subtopic_name = f"{topic}:\n{subtopic}"
|
174 |
-
G.add_node(subtopic_name, level=i)
|
175 |
-
G.add_edge(topic, subtopic_name)
|
176 |
-
|
177 |
-
if i > 0:
|
178 |
-
G.add_edge(topics[i-1], topic)
|
179 |
-
|
180 |
-
# Layout e estilo
|
181 |
-
pos = nx.spring_layout(G, k=2, iterations=50)
|
182 |
-
|
183 |
-
# Desenha nós principais
|
184 |
-
nx.draw_networkx_nodes(G, pos,
|
185 |
-
nodelist=[n for n in G.nodes() if ":" not in n],
|
186 |
-
node_color='lightblue',
|
187 |
-
node_size=3000)
|
188 |
-
|
189 |
-
# Desenha subtópicos
|
190 |
-
nx.draw_networkx_nodes(G, pos,
|
191 |
-
nodelist=[n for n in G.nodes() if ":" in n],
|
192 |
-
node_color='lightgreen',
|
193 |
-
node_size=2000)
|
194 |
-
|
195 |
-
# Desenha arestas e labels
|
196 |
-
nx.draw_networkx_edges(G, pos, edge_color='gray', arrows=True)
|
197 |
-
nx.draw_networkx_labels(G, pos, font_size=8, font_weight='bold')
|
198 |
-
|
199 |
-
# Salva imagem
|
200 |
-
buf = BytesIO()
|
201 |
-
plt.savefig(buf, format='png', bbox_inches='tight')
|
202 |
-
buf.seek(0)
|
203 |
-
plt.close()
|
204 |
-
|
205 |
-
return f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"
|
206 |
-
|
207 |
-
except Exception as e:
|
208 |
-
logging.error(f"Erro na visualização: {str(e)}")
|
209 |
-
return None
|
210 |
-
|
211 |
# main.py
|
212 |
import gradio as gr
|
213 |
from typing import Dict, Any
|
214 |
-
import sys
|
215 |
import logging
|
216 |
from config import Config
|
217 |
from utils import Utils
|
218 |
-
from validators import Validators
|
219 |
from models import ModelManager
|
220 |
from visualization import Visualizer
|
|
|
221 |
|
222 |
class LearningPathGenerator:
|
223 |
def __init__(self):
|
@@ -225,7 +132,6 @@ class LearningPathGenerator:
|
|
225 |
self.model_manager = ModelManager()
|
226 |
self.history_file = Config.HISTORY_FILE
|
227 |
|
228 |
-
# Inicialização do histórico
|
229 |
if not os.path.exists(self.history_file):
|
230 |
Utils.save_json([], self.history_file)
|
231 |
|
@@ -235,29 +141,15 @@ class LearningPathGenerator:
|
|
235 |
difficulty: str = "intermediate",
|
236 |
include_resources: bool = True) -> Dict[str, Any]:
|
237 |
try:
|
238 |
-
# Validação do áudio
|
239 |
-
valid_audio, audio_error = Validators.validate_audio_file(audio_path)
|
240 |
-
if not valid_audio:
|
241 |
-
return self._error_response(audio_error)
|
242 |
-
|
243 |
-
# Validação do nome
|
244 |
-
valid_name, name_error = Validators.validate_path_name(path_name)
|
245 |
-
if not valid_name:
|
246 |
-
return self._error_response(name_error)
|
247 |
-
|
248 |
-
# Transcrição
|
249 |
transcriber = self.model_manager.get_model("transcriber")
|
250 |
transcription = transcriber(audio_path)["text"]
|
251 |
|
252 |
-
# Geração da análise
|
253 |
generator = self.model_manager.get_model("generator")
|
254 |
-
analysis = self._generate_analysis(generator, transcription, difficulty)
|
255 |
|
256 |
-
|
257 |
-
topics, subtopics = self._extract_topics(analysis)
|
258 |
mind_map = Visualizer.create_mind_map(topics, subtopics)
|
259 |
|
260 |
-
# Salva no histórico
|
261 |
if path_name:
|
262 |
self._save_to_history(transcription, analysis, path_name)
|
263 |
|
@@ -268,75 +160,121 @@ class LearningPathGenerator:
|
|
268 |
}
|
269 |
|
270 |
except Exception as e:
|
271 |
-
self.logger.error(f"
|
272 |
return self._error_response(str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
def create_interface(self):
|
275 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
276 |
gr.Markdown("""
|
277 |
-
# 🎓
|
278 |
|
279 |
-
|
280 |
-
|
281 |
""")
|
282 |
|
283 |
-
with gr.Tab("
|
284 |
with gr.Row():
|
285 |
with gr.Column(scale=2):
|
286 |
audio_input = gr.Audio(
|
287 |
type="filepath",
|
288 |
-
label="Upload
|
289 |
-
description="
|
290 |
)
|
291 |
|
292 |
with gr.Row():
|
293 |
path_name = gr.Textbox(
|
294 |
-
label="
|
295 |
-
placeholder="
|
296 |
)
|
297 |
difficulty = gr.Dropdown(
|
298 |
-
choices=["
|
299 |
-
value="
|
300 |
-
label="
|
301 |
)
|
302 |
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
)
|
318 |
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
)
|
324 |
|
325 |
-
|
326 |
-
|
327 |
-
label="Mapa Mental da Trilha",
|
328 |
-
elem_id="mind_map"
|
329 |
-
)
|
330 |
-
|
331 |
-
with gr.Tab("Histórico"):
|
332 |
-
gr.Markdown("Trilhas Anteriores")
|
333 |
-
history_table = gr.Dataframe(
|
334 |
-
headers=["Data", "Nome", "Transcrição", "Análise"],
|
335 |
-
label="Histórico de Trilhas"
|
336 |
)
|
337 |
-
refresh_btn = gr.Button("Atualizar Histórico")
|
338 |
|
339 |
-
# Event handlers
|
340 |
process_btn.click(
|
341 |
fn=self.process_audio,
|
342 |
inputs=[audio_input, path_name, difficulty, include_resources],
|
@@ -346,66 +284,14 @@ class LearningPathGenerator:
|
|
346 |
"mind_map": mind_map_output
|
347 |
}
|
348 |
)
|
349 |
-
|
350 |
-
refresh_btn.click(
|
351 |
-
fn=self._load_history,
|
352 |
-
outputs=[history_table]
|
353 |
-
)
|
354 |
|
355 |
return app
|
356 |
|
357 |
-
def _generate_analysis(self,
|
358 |
-
generator,
|
359 |
-
text: str,
|
360 |
-
difficulty: str) -> str:
|
361 |
-
prompt = f"""
|
362 |
-
Com base no seguinte texto, crie uma trilha de aprendizado detalhada
|
363 |
-
para nível {difficulty}:
|
364 |
-
{text[:Config.MAX_TEXT_LENGTH]}
|
365 |
-
|
366 |
-
Trilha de aprendizado:
|
367 |
-
"""
|
368 |
-
|
369 |
-
response = generator(
|
370 |
-
prompt,
|
371 |
-
max_length=300,
|
372 |
-
num_return_sequences=1
|
373 |
-
)[0]["generated_text"]
|
374 |
-
|
375 |
-
if include_resources:
|
376 |
-
response += self._generate_resources()
|
377 |
-
|
378 |
-
return response
|
379 |
-
|
380 |
-
def _generate_resources(self) -> str:
|
381 |
-
return """
|
382 |
-
Recursos Recomendados:
|
383 |
-
|
384 |
-
1. Livros:
|
385 |
-
- "Guia Essencial do Tema"
|
386 |
-
- "Técnicas Avançadas"
|
387 |
-
|
388 |
-
2. Cursos Online:
|
389 |
-
- Coursera: "Especialização no Tema"
|
390 |
-
- edX: "Curso Avançado"
|
391 |
-
|
392 |
-
3. Recursos Práticos:
|
393 |
-
- Tutoriais interativos
|
394 |
-
- Exercícios práticos
|
395 |
-
- Projetos do mundo real
|
396 |
-
"""
|
397 |
-
|
398 |
-
def _error_response(self, error_msg: str) -> Dict[str, Any]:
|
399 |
-
return {
|
400 |
-
"transcription": f"Erro: {error_msg}",
|
401 |
-
"analysis": "Não foi possível gerar a análise devido a um erro.",
|
402 |
-
"mind_map": None
|
403 |
-
}
|
404 |
-
|
405 |
-
# Execução do app
|
406 |
if __name__ == "__main__":
|
407 |
try:
|
408 |
generator = LearningPathGenerator()
|
409 |
app = generator.create_interface()
|
410 |
app.launch(debug=Config.DEBUG)
|
411 |
-
except Exception as e:
|
|
|
|
|
|
9 |
LOG_LEVEL = os.getenv('LOG_LEVEL', 'INFO')
|
10 |
MODELS_CACHE_DIR = os.getenv('MODELS_CACHE_DIR', './models')
|
11 |
HISTORY_FILE = os.getenv('HISTORY_FILE', 'learning_path_history.json')
|
12 |
+
MAX_AUDIO_LENGTH = int(os.getenv('MAX_AUDIO_LENGTH', '600')) # seconds
|
13 |
MAX_TEXT_LENGTH = int(os.getenv('MAX_TEXT_LENGTH', '1000'))
|
14 |
SUPPORTED_AUDIO_FORMATS = ['.wav', '.mp3', '.ogg', '.flac']
|
15 |
|
16 |
+
# Visualization settings
|
17 |
MAX_TOPICS = int(os.getenv('MAX_TOPICS', '10'))
|
18 |
MAX_SUBTOPICS = int(os.getenv('MAX_SUBTOPICS', '5'))
|
19 |
FIGURE_DPI = int(os.getenv('FIGURE_DPI', '300'))
|
20 |
|
21 |
+
# Model settings
|
22 |
MODEL_TRANSCRIBER = os.getenv('MODEL_TRANSCRIBER', 'openai/whisper-base')
|
23 |
MODEL_GENERATOR = os.getenv('MODEL_GENERATOR', 'gpt2')
|
24 |
|
25 |
+
# Retry settings
|
26 |
MAX_RETRIES = int(os.getenv('MAX_RETRIES', '3'))
|
27 |
RETRY_DELAY = int(os.getenv('RETRY_DELAY', '1'))
|
28 |
|
|
|
31 |
import json
|
32 |
from typing import Dict, Any, Optional, List, Tuple
|
33 |
import os
|
34 |
+
from datetime import datetime
|
35 |
from config import Config
|
36 |
|
37 |
class Utils:
|
38 |
@staticmethod
|
39 |
def setup_logging() -> logging.Logger:
|
40 |
logger = logging.getLogger("LearningPathGenerator")
|
41 |
+
level = getattr(logging, Config.LOG_LEVEL)
|
42 |
+
logger.setLevel(level)
|
43 |
|
|
|
44 |
handler = logging.FileHandler("app.log")
|
45 |
formatter = logging.Formatter(
|
46 |
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
|
|
57 |
json.dump(data, f, ensure_ascii=False, indent=2)
|
58 |
return True
|
59 |
except Exception as e:
|
60 |
+
logging.error(f"Error saving JSON: {str(e)}")
|
61 |
return False
|
62 |
|
63 |
@staticmethod
|
|
|
66 |
with open(filename, 'r', encoding='utf-8') as f:
|
67 |
return json.load(f)
|
68 |
except Exception as e:
|
69 |
+
logging.error(f"Error loading JSON: {str(e)}")
|
70 |
return None
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
@staticmethod
|
73 |
+
def extract_topics(analysis: str) -> Tuple[List[str], Dict[str, List[str]]]:
|
74 |
+
# Simple topic extraction logic - could be enhanced
|
75 |
+
topics = ["Main Topic", "Subtopic 1", "Subtopic 2"]
|
76 |
+
subtopics = {
|
77 |
+
"Main Topic": ["Detail 1", "Detail 2"],
|
78 |
+
"Subtopic 1": ["Point 1", "Point 2"],
|
79 |
+
"Subtopic 2": ["Item 1", "Item 2"]
|
80 |
+
}
|
81 |
+
return topics, subtopics
|
|
|
|
|
82 |
|
83 |
# models.py
|
84 |
from transformers import pipeline
|
85 |
import torch
|
86 |
+
from typing import Dict, Any
|
87 |
import logging
|
88 |
from config import Config
|
89 |
|
|
|
95 |
|
96 |
def _initialize_models(self):
|
97 |
try:
|
|
|
98 |
device = 0 if torch.cuda.is_available() else -1
|
99 |
|
100 |
self.models["transcriber"] = pipeline(
|
|
|
110 |
)
|
111 |
|
112 |
except Exception as e:
|
113 |
+
self.logger.error(f"Error initializing models: {str(e)}")
|
114 |
raise
|
115 |
|
116 |
+
def get_model(self, name: str) -> Any:
|
117 |
return self.models.get(name)
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
# main.py
|
120 |
import gradio as gr
|
121 |
from typing import Dict, Any
|
|
|
122 |
import logging
|
123 |
from config import Config
|
124 |
from utils import Utils
|
|
|
125 |
from models import ModelManager
|
126 |
from visualization import Visualizer
|
127 |
+
from datetime import datetime
|
128 |
|
129 |
class LearningPathGenerator:
|
130 |
def __init__(self):
|
|
|
132 |
self.model_manager = ModelManager()
|
133 |
self.history_file = Config.HISTORY_FILE
|
134 |
|
|
|
135 |
if not os.path.exists(self.history_file):
|
136 |
Utils.save_json([], self.history_file)
|
137 |
|
|
|
141 |
difficulty: str = "intermediate",
|
142 |
include_resources: bool = True) -> Dict[str, Any]:
|
143 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
transcriber = self.model_manager.get_model("transcriber")
|
145 |
transcription = transcriber(audio_path)["text"]
|
146 |
|
|
|
147 |
generator = self.model_manager.get_model("generator")
|
148 |
+
analysis = self._generate_analysis(generator, transcription, difficulty, include_resources)
|
149 |
|
150 |
+
topics, subtopics = Utils.extract_topics(analysis)
|
|
|
151 |
mind_map = Visualizer.create_mind_map(topics, subtopics)
|
152 |
|
|
|
153 |
if path_name:
|
154 |
self._save_to_history(transcription, analysis, path_name)
|
155 |
|
|
|
160 |
}
|
161 |
|
162 |
except Exception as e:
|
163 |
+
self.logger.error(f"Processing error: {str(e)}")
|
164 |
return self._error_response(str(e))
|
165 |
+
|
166 |
+
def _generate_analysis(self,
|
167 |
+
generator: Any,
|
168 |
+
text: str,
|
169 |
+
difficulty: str,
|
170 |
+
include_resources: bool) -> str:
|
171 |
+
prompt = f"""
|
172 |
+
Based on the following text, create a detailed learning path
|
173 |
+
for {difficulty} level:
|
174 |
+
{text[:Config.MAX_TEXT_LENGTH]}
|
175 |
+
|
176 |
+
Learning path:
|
177 |
+
"""
|
178 |
+
|
179 |
+
response = generator(
|
180 |
+
prompt,
|
181 |
+
max_length=300,
|
182 |
+
num_return_sequences=1
|
183 |
+
)[0]["generated_text"]
|
184 |
+
|
185 |
+
if include_resources:
|
186 |
+
response += self._generate_resources()
|
187 |
+
|
188 |
+
return response
|
189 |
|
190 |
+
def _generate_resources(self) -> str:
|
191 |
+
return """
|
192 |
+
Recommended Resources:
|
193 |
+
|
194 |
+
1. Books:
|
195 |
+
- "Essential Guide"
|
196 |
+
- "Advanced Techniques"
|
197 |
+
|
198 |
+
2. Online Courses:
|
199 |
+
- Coursera: "Topic Specialization"
|
200 |
+
- edX: "Advanced Course"
|
201 |
+
|
202 |
+
3. Practical Resources:
|
203 |
+
- Interactive tutorials
|
204 |
+
- Practice exercises
|
205 |
+
- Real-world projects
|
206 |
+
"""
|
207 |
+
|
208 |
+
def _save_to_history(self, transcription: str, analysis: str, path_name: str):
|
209 |
+
history = Utils.load_json(self.history_file) or []
|
210 |
+
history.append({
|
211 |
+
"date": datetime.now().isoformat(),
|
212 |
+
"name": path_name,
|
213 |
+
"transcription": transcription,
|
214 |
+
"analysis": analysis
|
215 |
+
})
|
216 |
+
Utils.save_json(history, self.history_file)
|
217 |
+
|
218 |
+
def _error_response(self, error_msg: str) -> Dict[str, Any]:
|
219 |
+
return {
|
220 |
+
"transcription": f"Error: {error_msg}",
|
221 |
+
"analysis": "Could not generate analysis due to an error.",
|
222 |
+
"mind_map": None
|
223 |
+
}
|
224 |
+
|
225 |
def create_interface(self):
|
226 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
227 |
gr.Markdown("""
|
228 |
+
# 🎓 Learning Path Generator
|
229 |
|
230 |
+
Upload an audio file describing your learning goals
|
231 |
+
and receive a personalized learning path with resources!
|
232 |
""")
|
233 |
|
234 |
+
with gr.Tab("Generate Path"):
|
235 |
with gr.Row():
|
236 |
with gr.Column(scale=2):
|
237 |
audio_input = gr.Audio(
|
238 |
type="filepath",
|
239 |
+
label="Audio Upload",
|
240 |
+
description="Record or upload an audio describing your goals"
|
241 |
)
|
242 |
|
243 |
with gr.Row():
|
244 |
path_name = gr.Textbox(
|
245 |
+
label="Path Name",
|
246 |
+
placeholder="Give your learning path a name (optional)"
|
247 |
)
|
248 |
difficulty = gr.Dropdown(
|
249 |
+
choices=["beginner", "intermediate", "advanced"],
|
250 |
+
value="intermediate",
|
251 |
+
label="Difficulty Level"
|
252 |
)
|
253 |
|
254 |
+
include_resources = gr.Checkbox(
|
255 |
+
label="Include Recommended Resources",
|
256 |
+
value=True
|
257 |
+
)
|
258 |
+
|
259 |
+
process_btn = gr.Button(
|
260 |
+
"Generate Learning Path",
|
261 |
+
variant="primary"
|
262 |
+
)
|
263 |
|
264 |
+
text_output = gr.Textbox(
|
265 |
+
label="Audio Transcription",
|
266 |
+
lines=4
|
267 |
+
)
|
|
|
268 |
|
269 |
+
analysis_output = gr.Textbox(
|
270 |
+
label="Analysis and Learning Path",
|
271 |
+
lines=10
|
272 |
+
)
|
|
|
273 |
|
274 |
+
mind_map_output = gr.Image(
|
275 |
+
label="Learning Path Mind Map"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
)
|
|
|
277 |
|
|
|
278 |
process_btn.click(
|
279 |
fn=self.process_audio,
|
280 |
inputs=[audio_input, path_name, difficulty, include_resources],
|
|
|
284 |
"mind_map": mind_map_output
|
285 |
}
|
286 |
)
|
|
|
|
|
|
|
|
|
|
|
287 |
|
288 |
return app
|
289 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
if __name__ == "__main__":
|
291 |
try:
|
292 |
generator = LearningPathGenerator()
|
293 |
app = generator.create_interface()
|
294 |
app.launch(debug=Config.DEBUG)
|
295 |
+
except Exception as e:
|
296 |
+
logging.error(f"Application error: {str(e)}")
|
297 |
+
raise
|