import streamlit as st from groq import Groq # Define the API key here GROQ_API_KEY = "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" # Initialize session state for chat history if "chat_history" not in st.session_state: st.session_state.chat_history = [ {"role": "system", "content": "you are a helpful assistant. Take the input from the users and try to provide as detailed response as possible. Provide proper examples to help the user. Try to mention references or provide citations to make it more detail-oriented."} ] if "previous_sessions" not in st.session_state: st.session_state.previous_sessions = [] # Function to fetch response def fetch_response(user_input): client = Groq(api_key=GROQ_API_KEY) st.session_state.chat_history.append({"role": "user", "content": user_input}) chat_completion = client.chat.completions.create( messages=st.session_state.chat_history, model="mixtral-8x7b-32768", stream=False ) response = chat_completion.choices[0].message.content st.session_state.chat_history.append({"role": "assistant", "content": response}) return response # Streamlit app st.set_page_config(page_title="Fastest AI Chatbot", page_icon="🤖", layout="wide") st.markdown( """ """, unsafe_allow_html=True ) # Sidebar for previous sessions st.sidebar.title("Previous Sessions") st.sidebar.markdown("
", unsafe_allow_html=True) for i, session in enumerate(st.session_state.previous_sessions): if st.sidebar.button(f"Session {i + 1}"): st.session_state.chat_history = session st.sidebar.markdown("
", unsafe_allow_html=True) st.title("Fastest AI Chatbot") st.write("Ask a question and get a response.") # Display chat history st.markdown("
", unsafe_allow_html=True) for chat in st.session_state.chat_history: if chat["role"] == "user": st.markdown(f"**You:** {chat['content']}") elif chat["role"] == "assistant": st.markdown(f"**AI:** {chat['content']}") st.markdown("
", unsafe_allow_html=True) # Custom input field st.markdown( """
""", unsafe_allow_html=True ) # Custom Save Session button st.markdown( """ """, unsafe_allow_html=True ) # Handling Save Session in Streamlit if st.button("Trigger Save Session", key="trigger_save_session", help="Hidden button to handle session saving"): st.session_state.previous_sessions.append(st.session_state.chat_history) st.session_state.chat_history = [ {"role": "system", "content": "you are a helpful assistant. Take the input from the users and try to provide as detailed response as possible. Provide proper examples to help the user. Try to mention references or provide citations to make it more detail-oriented."} ] st.experimental_rerun() # Footer st.markdown( """ """, unsafe_allow_html=True )