File size: 3,642 Bytes
3911a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from diffusers import DiffusionPipeline, DDIMScheduler
from PIL import Image
import imageio
import torch

import gradio as gr

stable_model_list = [
    "runwayml/stable-diffusion-v1-5",
    "stabilityai/stable-diffusion-2",
    "stabilityai/stable-diffusion-2-base",
    "stabilityai/stable-diffusion-2-1",
    "stabilityai/stable-diffusion-2-1-base"
]

stable_inpiant_model_list = [
    "stabilityai/stable-diffusion-2-inpainting",
    "runwayml/stable-diffusion-inpainting"
]

stable_prompt_list = [
        "a photo of a man.",
        "a photo of a girl."
    ]

stable_negative_prompt_list = [
        "bad, ugly",
        "deformed"
    ]


def resize(height,img):
  baseheight = height
  img = Image.open(img)
  hpercent = (baseheight/float(img.size[1]))
  wsize = int((float(img.size[0])*float(hpercent)))
  img = img.resize((wsize,baseheight), Image.Resampling.LANCZOS)
  return img

def img_preprocces(source_img, prompt, negative_prompt):
    imageio.imwrite("data.png", source_img["image"])
    imageio.imwrite("data_mask.png", source_img["mask"])
    src = resize(512, "data.png")
    src.save("src.png")
    mask = resize(512, "data_mask.png")  
    mask.save("mask.png")
    return src, mask

def stable_diffusion_inpaint(
    image_path:str,
    model_path:str,
    prompt:str,
    negative_prompt:str,
    guidance_scale:int,
    num_inference_step:int,
    ):

    image, mask_image = img_preprocces(image_path, prompt, negative_prompt)
    pipe = DiffusionPipeline.from_pretrained(
        model_path,
        revision="fp16",
        torch_dtype=torch.float16,
    )
    pipe.to('cuda')
    pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
    pipe.enable_xformers_memory_efficient_attention()

    output = pipe(
        prompt = prompt,
        image = image,
        mask_image=mask_image,
        negative_prompt = negative_prompt,
        num_inference_steps = num_inference_step,
        guidance_scale = guidance_scale,
    ).images

    return output[0]


def stable_diffusion_inpaint_app():
    with gr.Tab('Inpaint'):
        inpaint_image_file = gr.Image(
            source="upload", 
            type="numpy", 
            tool="sketch", 
            elem_id="source_container"
        )

        inpaint_model_id = gr.Dropdown(
            choices=stable_inpiant_model_list, 
            value=stable_inpiant_model_list[0], 
            label='Inpaint Model Id'
        )

        inpaint_prompt = gr.Textbox(
            lines=1, 
            value=stable_prompt_list[0], 
            label='Prompt'
        )

        inpaint_negative_prompt = gr.Textbox(
            lines=1, 
            value=stable_negative_prompt_list[0], 
            label='Negative Prompt'
        )

        with gr.Accordion("Advanced Options", open=False):
            inpaint_guidance_scale = gr.Slider(
                minimum=0.1, 
                maximum=15, 
                step=0.1, 
                value=7.5, 
                label='Guidance Scale'
            )

            inpaint_num_inference_step = gr.Slider(
                minimum=1, 
                maximum=100, 
                step=1, 
                value=50, 
                label='Num Inference Step'
            )

        inpaint_predict = gr.Button(value='Generator')
    
    variables = {
        "image_path": inpaint_image_file,
        "model_path": inpaint_model_id,
        "prompt": inpaint_prompt,
        "negative_prompt": inpaint_negative_prompt,
        "guidance_scale": inpaint_guidance_scale,
        "num_inference_step": inpaint_num_inference_step,
        "predict": inpaint_predict
    }

    return variables