File size: 5,305 Bytes
2204ef0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from utils.image2image import stable_diffusion_img2img
from utils.text2image import stable_diffusion_text2img

import gradio as gr

stable_model_list = [
    "runwayml/stable-diffusion-v1-5",
    "stabilityai/stable-diffusion-2",
    "stabilityai/stable-diffusion-2-base",
    "stabilityai/stable-diffusion-2-1",
    "stabilityai/stable-diffusion-2-1-base"
]
stable_prompt_list = [
        "a photo of a man.",
        "a photo of a girl."
    ]

stable_negative_prompt_list = [
        "bad, ugly",
        "deformed"
    ]
app = gr.Blocks()
with app:
    gr.Markdown("# **<h2 align='center'>Stable Diffusion WebUI<h2>**")
    gr.Markdown(
        """
        <h5 style='text-align: center'>
        Follow me for more! 
        <a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a>
        </h5>
        """
    )
    with gr.Row():
        with gr.Column():
            with gr.Tab('Text2Image'):
                text2image_model_id = gr.Dropdown(
                    choices=stable_model_list, 
                    value=stable_model_list[0], 
                    label='Text-Image Model Id'
                )

                text2image_prompt = gr.Textbox(
                    lines=1, 
                    value=stable_prompt_list[0], 
                    label='Prompt'
                )

                text2image_negative_prompt = gr.Textbox(
                    lines=1, 
                    value=stable_negative_prompt_list[0], 
                    label='Negative Prompt'
                )

                with gr.Accordion("Advanced Options", open=False):
                    text2image_guidance_scale = gr.Slider(
                        minimum=0.1, 
                        maximum=15, 
                        step=0.1, 
                        value=7.5, 
                        label='Guidance Scale'
                    )

                    text2image_num_inference_step = gr.Slider(
                        minimum=1, 
                        maximum=100, 
                        step=1, 
                        value=50, 
                        label='Num Inference Step'
                    )

                    text2image_height = gr.Slider(
                        minimum=128, 
                        maximum=1280, 
                        step=32, 
                        value=512, 
                        label='Tile Height'
                    )

                    text2image_width = gr.Slider(
                        minimum=128, 
                        maximum=1280, 
                        step=32, 
                        value=768, 
                        label='Tile Height'
                    )

                text2image_predict = gr.Button(value='Generator')


            with gr.Tab('Image2Image'):
                image2image2_image_file = gr.Image(label='Image')

                image2image_model_id = gr.Dropdown(
                    choices=stable_model_list, 
                    value=stable_model_list[0], 
                    label='Image-Image Model Id'
                )

                image2image_prompt = gr.Textbox(
                    lines=1, 
                    value=stable_prompt_list[0], 
                    label='Prompt'
                )

                image2image_negative_prompt = gr.Textbox(
                    lines=1, 
                    value=stable_negative_prompt_list[0], 
                    label='Negative Prompt'
                )

                with gr.Accordion("Advanced Options", open=False):
                    image2image_guidance_scale = gr.Slider(
                        minimum=0.1, 
                        maximum=15, 
                        step=0.1, 
                        value=7.5, 
                        label='Guidance Scale'
                    )

                    image2image_num_inference_step = gr.Slider(
                        minimum=1, 
                        maximum=100, 
                        step=1, 
                        value=50, 
                        label='Num Inference Step'
                    )

                image2image_predict = gr.Button(value='Generator')


    with gr.Tab('Generator'):
        with gr.Column():
            output_image = gr.Image(label='Image')
            
        text2image_predict.click(
            fn = stable_diffusion_text2img,
            inputs = [
                text2image_model_id,
                text2image_prompt, 
                text2image_negative_prompt, 
                text2image_guidance_scale,
                text2image_num_inference_step, 
                text2image_height,
                text2image_width,
            ],
            outputs = [output_image],
        )  

        image2image_predict.click(
            fn = stable_diffusion_img2img,
            inputs = [
                image2image2_image_file,
                image2image_model_id, 
                image2image_prompt, 
                image2image_negative_prompt,
                image2image_guidance_scale, 
                image2image_num_inference_step,
            ],
            outputs = [output_image],
        )  

app.launch()