Spaces:
Runtime error
Runtime error
File size: 5,305 Bytes
2204ef0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
from utils.image2image import stable_diffusion_img2img
from utils.text2image import stable_diffusion_text2img
import gradio as gr
stable_model_list = [
"runwayml/stable-diffusion-v1-5",
"stabilityai/stable-diffusion-2",
"stabilityai/stable-diffusion-2-base",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-2-1-base"
]
stable_prompt_list = [
"a photo of a man.",
"a photo of a girl."
]
stable_negative_prompt_list = [
"bad, ugly",
"deformed"
]
app = gr.Blocks()
with app:
gr.Markdown("# **<h2 align='center'>Stable Diffusion WebUI<h2>**")
gr.Markdown(
"""
<h5 style='text-align: center'>
Follow me for more!
<a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a>
</h5>
"""
)
with gr.Row():
with gr.Column():
with gr.Tab('Text2Image'):
text2image_model_id = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label='Text-Image Model Id'
)
text2image_prompt = gr.Textbox(
lines=1,
value=stable_prompt_list[0],
label='Prompt'
)
text2image_negative_prompt = gr.Textbox(
lines=1,
value=stable_negative_prompt_list[0],
label='Negative Prompt'
)
with gr.Accordion("Advanced Options", open=False):
text2image_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label='Guidance Scale'
)
text2image_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label='Num Inference Step'
)
text2image_height = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=512,
label='Tile Height'
)
text2image_width = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=768,
label='Tile Height'
)
text2image_predict = gr.Button(value='Generator')
with gr.Tab('Image2Image'):
image2image2_image_file = gr.Image(label='Image')
image2image_model_id = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label='Image-Image Model Id'
)
image2image_prompt = gr.Textbox(
lines=1,
value=stable_prompt_list[0],
label='Prompt'
)
image2image_negative_prompt = gr.Textbox(
lines=1,
value=stable_negative_prompt_list[0],
label='Negative Prompt'
)
with gr.Accordion("Advanced Options", open=False):
image2image_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label='Guidance Scale'
)
image2image_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label='Num Inference Step'
)
image2image_predict = gr.Button(value='Generator')
with gr.Tab('Generator'):
with gr.Column():
output_image = gr.Image(label='Image')
text2image_predict.click(
fn = stable_diffusion_text2img,
inputs = [
text2image_model_id,
text2image_prompt,
text2image_negative_prompt,
text2image_guidance_scale,
text2image_num_inference_step,
text2image_height,
text2image_width,
],
outputs = [output_image],
)
image2image_predict.click(
fn = stable_diffusion_img2img,
inputs = [
image2image2_image_file,
image2image_model_id,
image2image_prompt,
image2image_negative_prompt,
image2image_guidance_scale,
image2image_num_inference_step,
],
outputs = [output_image],
)
app.launch() |