Spaces:
Runtime error
Runtime error
update
Browse files
diffusion_webui/controlnet_inpaint/canny_inpaint.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from diffusers import (
|
6 |
+
ControlNetModel,
|
7 |
+
StableDiffusionControlNetPipeline,
|
8 |
+
UniPCMultistepScheduler,
|
9 |
+
)
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
stable_model_list = [
|
13 |
+
"runwayml/stable-diffusion-v1-5",
|
14 |
+
"stabilityai/stable-diffusion-2-1",
|
15 |
+
]
|
16 |
+
|
17 |
+
controlnet_canny_model_list = [
|
18 |
+
"lllyasviel/sd-controlnet-canny",
|
19 |
+
"thibaud/controlnet-sd21-canny-diffusers",
|
20 |
+
]
|
21 |
+
|
22 |
+
|
23 |
+
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
24 |
+
|
25 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
26 |
+
|
27 |
+
data_list = [
|
28 |
+
"data/test.png",
|
29 |
+
]
|
30 |
+
|
31 |
+
|
32 |
+
def controlnet_canny(
|
33 |
+
dict_image: str,
|
34 |
+
controlnet_model_path: str,
|
35 |
+
):
|
36 |
+
image = dict_image["image"].convert("RGB").resize((512, 512))
|
37 |
+
image = np.array(image)
|
38 |
+
|
39 |
+
image = cv2.Canny(image, 100, 200)
|
40 |
+
image = image[:, :, None]
|
41 |
+
image = np.concatenate([image, image, image], axis=2)
|
42 |
+
image = Image.fromarray(image)
|
43 |
+
|
44 |
+
controlnet = ControlNetModel.from_pretrained(
|
45 |
+
controlnet_model_path, torch_dtype=torch.float16
|
46 |
+
)
|
47 |
+
return controlnet, image
|
48 |
+
|
49 |
+
|
50 |
+
def stable_diffusion_controlnet_canny(
|
51 |
+
image_path: str,
|
52 |
+
stable_model_path: str,
|
53 |
+
controlnet_model_path: str,
|
54 |
+
prompt: str,
|
55 |
+
negative_prompt: str,
|
56 |
+
guidance_scale: int,
|
57 |
+
num_inference_step: int,
|
58 |
+
):
|
59 |
+
|
60 |
+
controlnet, image = controlnet_canny(
|
61 |
+
image_path=image_path, controlnet_model_path=controlnet_model_path
|
62 |
+
)
|
63 |
+
|
64 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
65 |
+
pretrained_model_name_or_path=stable_model_path,
|
66 |
+
controlnet=controlnet,
|
67 |
+
safety_checker=None,
|
68 |
+
torch_dtype=torch.float16,
|
69 |
+
)
|
70 |
+
pipe.to("cuda")
|
71 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
72 |
+
pipe.enable_xformers_memory_efficient_attention()
|
73 |
+
|
74 |
+
output = pipe(
|
75 |
+
prompt=prompt,
|
76 |
+
image=image,
|
77 |
+
negative_prompt=negative_prompt,
|
78 |
+
num_inference_steps=num_inference_step,
|
79 |
+
guidance_scale=guidance_scale,
|
80 |
+
).images
|
81 |
+
|
82 |
+
return output[0]
|
83 |
+
|
84 |
+
|
85 |
+
def stable_diffusion_controlnet_canny_app():
|
86 |
+
with gr.Blocks():
|
87 |
+
with gr.Row():
|
88 |
+
with gr.Column():
|
89 |
+
controlnet_canny_image_file = gr.Image(
|
90 |
+
type="filepath", label="Image"
|
91 |
+
)
|
92 |
+
|
93 |
+
controlnet_canny_stable_model_id = gr.Dropdown(
|
94 |
+
choices=stable_model_list,
|
95 |
+
value=stable_model_list[0],
|
96 |
+
label="Stable Model Id",
|
97 |
+
)
|
98 |
+
|
99 |
+
controlnet_canny_model_id = gr.Dropdown(
|
100 |
+
choices=controlnet_canny_model_list,
|
101 |
+
value=controlnet_canny_model_list[0],
|
102 |
+
label="Controlnet Model Id",
|
103 |
+
)
|
104 |
+
|
105 |
+
controlnet_canny_prompt = gr.Textbox(
|
106 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
107 |
+
)
|
108 |
+
|
109 |
+
controlnet_canny_negative_prompt = gr.Textbox(
|
110 |
+
lines=1,
|
111 |
+
value=stable_negative_prompt_list[0],
|
112 |
+
label="Negative Prompt",
|
113 |
+
)
|
114 |
+
|
115 |
+
with gr.Accordion("Advanced Options", open=False):
|
116 |
+
controlnet_canny_guidance_scale = gr.Slider(
|
117 |
+
minimum=0.1,
|
118 |
+
maximum=15,
|
119 |
+
step=0.1,
|
120 |
+
value=7.5,
|
121 |
+
label="Guidance Scale",
|
122 |
+
)
|
123 |
+
|
124 |
+
controlnet_canny_num_inference_step = gr.Slider(
|
125 |
+
minimum=1,
|
126 |
+
maximum=100,
|
127 |
+
step=1,
|
128 |
+
value=50,
|
129 |
+
label="Num Inference Step",
|
130 |
+
)
|
131 |
+
|
132 |
+
controlnet_canny_predict = gr.Button(value="Generator")
|
133 |
+
|
134 |
+
with gr.Column():
|
135 |
+
output_image = gr.Image(label="Output")
|
136 |
+
|
137 |
+
gr.Examples(
|
138 |
+
fn=stable_diffusion_controlnet_canny,
|
139 |
+
examples=[
|
140 |
+
[
|
141 |
+
data_list[0],
|
142 |
+
stable_model_list[0],
|
143 |
+
controlnet_canny_model_list[0],
|
144 |
+
stable_prompt_list[0],
|
145 |
+
stable_negative_prompt_list[0],
|
146 |
+
7.5,
|
147 |
+
50,
|
148 |
+
]
|
149 |
+
],
|
150 |
+
inputs=[
|
151 |
+
controlnet_canny_image_file,
|
152 |
+
controlnet_canny_stable_model_id,
|
153 |
+
controlnet_canny_model_id,
|
154 |
+
controlnet_canny_prompt,
|
155 |
+
controlnet_canny_negative_prompt,
|
156 |
+
controlnet_canny_guidance_scale,
|
157 |
+
controlnet_canny_num_inference_step,
|
158 |
+
],
|
159 |
+
outputs=[output_image],
|
160 |
+
cache_examples=False,
|
161 |
+
label="Controlnet Canny Example",
|
162 |
+
)
|
163 |
+
|
164 |
+
controlnet_canny_predict.click(
|
165 |
+
fn=stable_diffusion_controlnet_canny,
|
166 |
+
inputs=[
|
167 |
+
controlnet_canny_image_file,
|
168 |
+
controlnet_canny_stable_model_id,
|
169 |
+
controlnet_canny_model_id,
|
170 |
+
controlnet_canny_prompt,
|
171 |
+
controlnet_canny_negative_prompt,
|
172 |
+
controlnet_canny_guidance_scale,
|
173 |
+
controlnet_canny_num_inference_step,
|
174 |
+
],
|
175 |
+
outputs=[output_image],
|
176 |
+
)
|
diffusion_webui/controlnet_inpaint/controlnet_inpaint_app.py
CHANGED
@@ -4,14 +4,14 @@ import torch
|
|
4 |
from diffusers import UniPCMultistepScheduler
|
5 |
from PIL import Image
|
6 |
|
7 |
-
from diffusion_webui.
|
8 |
from diffusion_webui.controlnet_inpaint.pipeline_stable_diffusion_controlnet_inpaint import (
|
9 |
StableDiffusionControlNetInpaintPipeline,
|
10 |
)
|
11 |
|
12 |
stable_inpaint_model_list = [
|
13 |
-
"stabilityai/stable-diffusion-2-inpainting",
|
14 |
"runwayml/stable-diffusion-inpainting",
|
|
|
15 |
]
|
16 |
|
17 |
controlnet_model_list = [
|
@@ -36,7 +36,7 @@ def load_img(image_path: str):
|
|
36 |
|
37 |
|
38 |
def stable_diffusion_inpiant_controlnet_canny(
|
39 |
-
|
40 |
stable_model_path: str,
|
41 |
controlnet_model_path: str,
|
42 |
prompt: str,
|
@@ -45,15 +45,11 @@ def stable_diffusion_inpiant_controlnet_canny(
|
|
45 |
guidance_scale: int,
|
46 |
num_inference_steps: int,
|
47 |
):
|
48 |
-
|
49 |
-
|
50 |
-
mask_image = pil_image["mask"].convert("RGB").resize((512, 512))
|
51 |
-
|
52 |
-
# normal_image = load_img(normal_image_path)
|
53 |
-
# mask_image = load_img(mask_image_path)
|
54 |
|
55 |
controlnet, control_image = controlnet_canny(
|
56 |
-
|
57 |
controlnet_model_path=controlnet_model_path,
|
58 |
)
|
59 |
|
@@ -91,7 +87,7 @@ def stable_diffusion_inpiant_controlnet_canny_app():
|
|
91 |
source="upload",
|
92 |
tool="sketch",
|
93 |
elem_id="image_upload",
|
94 |
-
type="
|
95 |
label="Upload",
|
96 |
)
|
97 |
|
|
|
4 |
from diffusers import UniPCMultistepScheduler
|
5 |
from PIL import Image
|
6 |
|
7 |
+
from diffusion_webui.controlnet_inpaint.canny_inpaint import controlnet_canny
|
8 |
from diffusion_webui.controlnet_inpaint.pipeline_stable_diffusion_controlnet_inpaint import (
|
9 |
StableDiffusionControlNetInpaintPipeline,
|
10 |
)
|
11 |
|
12 |
stable_inpaint_model_list = [
|
|
|
13 |
"runwayml/stable-diffusion-inpainting",
|
14 |
+
"stabilityai/stable-diffusion-2-inpainting",
|
15 |
]
|
16 |
|
17 |
controlnet_model_list = [
|
|
|
36 |
|
37 |
|
38 |
def stable_diffusion_inpiant_controlnet_canny(
|
39 |
+
dict_image: str,
|
40 |
stable_model_path: str,
|
41 |
controlnet_model_path: str,
|
42 |
prompt: str,
|
|
|
45 |
guidance_scale: int,
|
46 |
num_inference_steps: int,
|
47 |
):
|
48 |
+
normal_image = dict_image["image"].convert("RGB").resize((512, 512))
|
49 |
+
mask_image = dict_image["mask"].convert("RGB").resize((512, 512))
|
|
|
|
|
|
|
|
|
50 |
|
51 |
controlnet, control_image = controlnet_canny(
|
52 |
+
dict_image=dict_image,
|
53 |
controlnet_model_path=controlnet_model_path,
|
54 |
)
|
55 |
|
|
|
87 |
source="upload",
|
88 |
tool="sketch",
|
89 |
elem_id="image_upload",
|
90 |
+
type="pil",
|
91 |
label="Upload",
|
92 |
)
|
93 |
|