Spaces:
Runtime error
Runtime error
Update utils.py
Browse files
utils.py
CHANGED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import namedtuple
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from scipy.interpolate import interp1d
|
6 |
+
import torch
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
# Mapping of nucleotides to float coordinates
|
9 |
+
mapping_easy = {
|
10 |
+
"A": np.array([0.5, -0.8660254037844386]),
|
11 |
+
"T": np.array([0.5, 0.8660254037844386]),
|
12 |
+
"G": np.array([0.8660254037844386, -0.5]),
|
13 |
+
"C": np.array([0.8660254037844386, 0.5]),
|
14 |
+
"N": np.array([0, 0]),
|
15 |
+
}
|
16 |
+
|
17 |
+
# coordinates for x+iy
|
18 |
+
Coord = namedtuple("Coord", ["x", "y"])
|
19 |
+
# coordinates for a CGR encoding
|
20 |
+
CGRCoords = namedtuple("CGRCoords", ["N", "x", "y"])
|
21 |
+
# coordinates for each nucleotide in the 2d-plane
|
22 |
+
DEFAULT_COORDS = {"A": Coord(1, 1), "C": Coord(-1, 1), "G": Coord(-1, -1), "T": Coord(1, -1)}
|
23 |
+
|
24 |
+
|
25 |
+
# Function to convert a DNA sequence to a list of coordinates
|
26 |
+
def _dna_to_coordinates(dna_sequence: str, mapping: dict[str, np.ndarray]) -> np.ndarray:
|
27 |
+
dna_sequence = dna_sequence.upper()
|
28 |
+
coordinates = np.array([mapping.get(nucleotide, mapping["N"]) for nucleotide in dna_sequence])
|
29 |
+
return coordinates
|
30 |
+
|
31 |
+
|
32 |
+
# Function to create the cumulative sum of a list of coordinates
|
33 |
+
def _get_cumulative_coords(mapped_coords):
|
34 |
+
cumulative_coords = np.cumsum(mapped_coords, axis=0)
|
35 |
+
return cumulative_coords
|
36 |
+
|
37 |
+
|
38 |
+
def generate_2d_sequence(seq):
|
39 |
+
dna_sequence = seq.upper()
|
40 |
+
mapped_coords = _dna_to_coordinates(dna_sequence, mapping_easy)
|
41 |
+
cumulative_coords = _get_cumulative_coords(mapped_coords)
|
42 |
+
|
43 |
+
# Scale the input data using standardization
|
44 |
+
x_train = cumulative_coords[:, 0]
|
45 |
+
y_train = cumulative_coords[:, 1]
|
46 |
+
x_train_scaled = (x_train - x_train.mean()) / x_train.std()
|
47 |
+
y_train_scaled = (y_train - y_train.mean()) / y_train.std()
|
48 |
+
scaled_coords = np.column_stack((x_train_scaled, y_train_scaled))
|
49 |
+
|
50 |
+
# example["2D_Sequence"] = cumulative_coords.tolist()
|
51 |
+
# example["2D_Sequence_Scaled"] = scaled_coords.tolist()
|
52 |
+
|
53 |
+
# Interpolate the 2D sequences to have exactly 1000 pairs
|
54 |
+
interpolated_coords = y_train_scaled # default to filter out bad examples
|
55 |
+
if len(scaled_coords) != 1000:
|
56 |
+
try:
|
57 |
+
t = np.linspace(0, 1, len(scaled_coords))
|
58 |
+
t_new = np.linspace(0, 1, 1000)
|
59 |
+
|
60 |
+
interp_func_x = interp1d(t, scaled_coords[:, 0], kind="linear")
|
61 |
+
interp_func_y = interp1d(t, scaled_coords[:, 1], kind="linear")
|
62 |
+
|
63 |
+
interpolated_coords = interp_func_x(t_new)
|
64 |
+
except Exception as e:
|
65 |
+
print(f"Interpolation error: {e}")
|
66 |
+
|
67 |
+
tensor_2d_rep_y = torch.Tensor(interpolated_coords).reshape(1,1000)
|
68 |
+
|
69 |
+
return y_train_scaled, x_train_scaled
|
70 |
+
|
71 |
+
|
72 |
+
def generate_2d_sequence_small(seq):
|
73 |
+
dna_sequence = seq.upper()
|
74 |
+
mapped_coords = _dna_to_coordinates(dna_sequence, mapping_easy)
|
75 |
+
cumulative_coords = _get_cumulative_coords(mapped_coords)
|
76 |
+
|
77 |
+
# Scale the input data using standardization
|
78 |
+
x_train = cumulative_coords[:, 0]
|
79 |
+
y_train = cumulative_coords[:, 1]
|
80 |
+
x_train_scaled = (x_train - x_train.mean()) / x_train.std()
|
81 |
+
y_train_scaled = (y_train - y_train.mean()) / y_train.std()
|
82 |
+
scaled_coords = np.column_stack((x_train_scaled, y_train_scaled))
|
83 |
+
|
84 |
+
# example["2D_Sequence"] = cumulative_coords.tolist()
|
85 |
+
# example["2D_Sequence_Scaled"] = scaled_coords.tolist()
|
86 |
+
|
87 |
+
# Interpolate the 2D sequences to have exactly 1000 pairs
|
88 |
+
interpolated_coords = y_train_scaled # default to filter out bad examples
|
89 |
+
if len(scaled_coords) != 1000:
|
90 |
+
try:
|
91 |
+
t = np.linspace(0, 1, len(scaled_coords))
|
92 |
+
t_new = np.linspace(0, 1, 400)
|
93 |
+
|
94 |
+
interp_func_x = interp1d(t, scaled_coords[:, 0], kind="linear")
|
95 |
+
interp_func_y = interp1d(t, scaled_coords[:, 1], kind="linear")
|
96 |
+
|
97 |
+
interpolated_coords = interp_func_y(t_new)
|
98 |
+
except Exception as e:
|
99 |
+
print(f"Interpolation error: {e}")
|
100 |
+
|
101 |
+
tensor_2d_rep_y = torch.Tensor(interpolated_coords).reshape(400)
|
102 |
+
|
103 |
+
return tensor_2d_rep_y
|
104 |
+
|
105 |
+
def plot_seq_full_label(df, filter):
|
106 |
+
ncols = len(filter)
|
107 |
+
unique_ids = df.label_id.unique()
|
108 |
+
print(unique_ids)
|
109 |
+
unique_ids_plot = [id for id in unique_ids if id in filter]
|
110 |
+
print(unique_ids_plot)
|
111 |
+
fig, axs = plt.subplots(ncols=ncols)
|
112 |
+
for i, id in enumerate(unique_ids_plot):
|
113 |
+
# data = (df[df['label_id'] == id].sample((n=3)))['seq'].values[0]
|
114 |
+
# print(data)
|
115 |
+
data = generate_2d_sequence_small(df[df['label_id'] == id].sample(n=1)['seq'].values[0]).numpy()
|
116 |
+
# two_d = generate_2d_sequence(data)[0]
|
117 |
+
axs[i].plot(data)
|
118 |
+
return fig
|