Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,151 +1,110 @@
|
|
1 |
-
from pathlib import Path
|
2 |
-
from typing import List, Dict, Tuple
|
3 |
-
import matplotlib.colors as mpl_colors
|
4 |
-
|
5 |
import pandas as pd
|
6 |
-
import
|
7 |
-
import
|
8 |
-
|
9 |
-
from shiny import
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
df = pd.read_csv(Path(__file__).parent / "penguins.csv", na_values="NA")
|
16 |
-
numeric_cols: List[str] = df.select_dtypes(include=["float64"]).columns.tolist()
|
17 |
-
species: List[str] = df["Species"].unique().tolist()
|
18 |
-
species.sort()
|
19 |
-
|
20 |
-
app_ui = ui.page_fillable(
|
21 |
-
shinyswatch.theme.minty(),
|
22 |
-
ui.layout_sidebar(
|
23 |
-
ui.sidebar(
|
24 |
-
# Artwork by @allison_horst
|
25 |
-
ui.input_selectize(
|
26 |
-
"xvar",
|
27 |
-
"X variable",
|
28 |
-
numeric_cols,
|
29 |
-
selected="Bill Length (mm)",
|
30 |
-
),
|
31 |
-
ui.input_selectize(
|
32 |
-
"yvar",
|
33 |
-
"Y variable",
|
34 |
-
numeric_cols,
|
35 |
-
selected="Bill Depth (mm)",
|
36 |
-
),
|
37 |
-
ui.input_checkbox_group(
|
38 |
-
"species", "Filter by species", species, selected=species
|
39 |
-
),
|
40 |
-
ui.hr(),
|
41 |
-
ui.input_switch("by_species", "Show species", value=True),
|
42 |
-
ui.input_switch("show_margins", "Show marginal plots", value=True),
|
43 |
-
),
|
44 |
-
ui.output_ui("value_boxes"),
|
45 |
-
ui.output_plot("scatter", fill=True),
|
46 |
-
ui.help_text(
|
47 |
-
"Artwork by ",
|
48 |
-
ui.a("@allison_horst", href="https://twitter.com/allison_horst"),
|
49 |
-
class_="text-end",
|
50 |
-
),
|
51 |
-
),
|
52 |
-
)
|
53 |
-
|
54 |
-
|
55 |
-
def server(input: Inputs, output: Outputs, session: Session):
|
56 |
-
@reactive.Calc
|
57 |
-
def filtered_df() -> pd.DataFrame:
|
58 |
-
"""Returns a Pandas data frame that includes only the desired rows"""
|
59 |
-
|
60 |
-
# This calculation "req"uires that at least one species is selected
|
61 |
-
req(len(input.species()) > 0)
|
62 |
-
|
63 |
-
# Filter the rows so we only include the desired species
|
64 |
-
return df[df["Species"].isin(input.species())]
|
65 |
-
|
66 |
-
@output
|
67 |
-
@render.plot
|
68 |
-
def scatter():
|
69 |
-
"""Generates a plot for Shiny to display to the user"""
|
70 |
-
|
71 |
-
# The plotting function to use depends on whether margins are desired
|
72 |
-
plotfunc = sns.jointplot if input.show_margins() else sns.scatterplot
|
73 |
-
|
74 |
-
plotfunc(
|
75 |
-
data=filtered_df(),
|
76 |
-
x=input.xvar(),
|
77 |
-
y=input.yvar(),
|
78 |
-
palette=palette,
|
79 |
-
hue="Species" if input.by_species() else None,
|
80 |
-
hue_order=species,
|
81 |
-
legend=False,
|
82 |
-
)
|
83 |
-
|
84 |
-
@output
|
85 |
-
@render.ui
|
86 |
-
def value_boxes():
|
87 |
-
df = filtered_df()
|
88 |
-
|
89 |
-
def penguin_value_box(title: str, count: int, bgcol: str, showcase_img: str):
|
90 |
-
return ui.value_box(
|
91 |
-
title,
|
92 |
-
count,
|
93 |
-
{"class_": "pt-1 pb-0"},
|
94 |
-
showcase=ui.fill.as_fill_item(
|
95 |
-
ui.tags.img(
|
96 |
-
{"style": "object-fit:contain;"},
|
97 |
-
src=showcase_img,
|
98 |
-
)
|
99 |
-
),
|
100 |
-
theme_color=None,
|
101 |
-
style=f"background-color: {bgcol};",
|
102 |
-
)
|
103 |
-
|
104 |
-
if not input.by_species():
|
105 |
-
return penguin_value_box(
|
106 |
-
"Penguins",
|
107 |
-
len(df.index),
|
108 |
-
bg_palette["default"],
|
109 |
-
# Artwork by @allison_horst
|
110 |
-
showcase_img="penguins.png",
|
111 |
-
)
|
112 |
-
|
113 |
-
value_boxes = [
|
114 |
-
penguin_value_box(
|
115 |
-
name,
|
116 |
-
len(df[df["Species"] == name]),
|
117 |
-
bg_palette[name],
|
118 |
-
# Artwork by @allison_horst
|
119 |
-
showcase_img=f"{name}.png",
|
120 |
-
)
|
121 |
-
for name in species
|
122 |
-
# Only include boxes for _selected_ species
|
123 |
-
if name in input.species()
|
124 |
-
]
|
125 |
-
|
126 |
-
return ui.layout_column_wrap(*value_boxes, width = 1 / len(value_boxes))
|
127 |
-
|
128 |
-
|
129 |
-
# "darkorange", "purple", "cyan4"
|
130 |
-
colors = [[255, 140, 0], [160, 32, 240], [0, 139, 139]]
|
131 |
-
colors = [(r / 255.0, g / 255.0, b / 255.0) for r, g, b in colors]
|
132 |
-
|
133 |
-
palette: Dict[str, Tuple[float, float, float]] = {
|
134 |
-
"Adelie": colors[0],
|
135 |
-
"Chinstrap": colors[1],
|
136 |
-
"Gentoo": colors[2],
|
137 |
-
"default": sns.color_palette()[0], # type: ignore
|
138 |
-
}
|
139 |
-
|
140 |
-
bg_palette = {}
|
141 |
-
# Use `sns.set_style("whitegrid")` to help find approx alpha value
|
142 |
-
for name, col in palette.items():
|
143 |
-
# Adjusted n_colors until `axe` accessibility did not complain about color contrast
|
144 |
-
bg_palette[name] = mpl_colors.to_hex(sns.light_palette(col, n_colors=7)[1]) # type: ignore
|
145 |
-
|
146 |
-
|
147 |
-
app = App(
|
148 |
-
app_ui,
|
149 |
-
server,
|
150 |
-
static_assets=str(www_dir),
|
151 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from scipy.interpolate import interp1d
|
5 |
+
from shiny import render
|
6 |
+
from shiny.express import input, output, ui
|
7 |
+
from utils import (
|
8 |
+
generate_2d_sequence,
|
9 |
+
plot_seq_full_label
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
)
|
11 |
+
import os
|
12 |
+
import matplotlib as mpl
|
13 |
+
import seaborn as sns
|
14 |
+
mpl.rcParams.update(mpl.rcParamsDefault)
|
15 |
+
|
16 |
+
df_gene_varient = pd.read_parquet("gene_varient.parquet")
|
17 |
+
df_histone = pd.read_parquet("histone.parquet")
|
18 |
+
df_gene_len = len(df_gene_varient)
|
19 |
+
df_histone_len = len(df_histone)
|
20 |
+
df_enhancer_annotation = pd.read_parquet('enhancer_annotation.parquet')
|
21 |
+
df_enhancer_annotation_len = len(df_enhancer_annotation)
|
22 |
+
ui.page_opts(fillable=True)
|
23 |
+
|
24 |
+
with ui.navset_card_tab(id="tab"):
|
25 |
+
with ui.nav_panel("Gene Varient"):
|
26 |
+
ui.panel_title("Is there a pattern to gene varient location?")
|
27 |
+
with ui.layout_columns():
|
28 |
+
with ui.card():
|
29 |
+
ui.input_slider("sample", "sample", 0, df_gene_len, 40)
|
30 |
+
|
31 |
+
def plot_loss_rates(df, sample, enhancer=False):
|
32 |
+
y_values = generate_2d_sequence(df['seq'].iloc[sample])[0]
|
33 |
+
x_values = generate_2d_sequence(df['seq'].iloc[sample])[1]
|
34 |
+
|
35 |
+
integers = df['labels'].iloc[sample]
|
36 |
+
if enhancer:
|
37 |
+
K= 128
|
38 |
+
res = []
|
39 |
+
for i in integers:
|
40 |
+
res.extend([i]*K)
|
41 |
+
integers = res
|
42 |
+
# Create a DataFrame with the x values, y values, and integers
|
43 |
+
data = {'x': x_values, 'y': y_values, 'color': integers}
|
44 |
+
|
45 |
+
# fig, ax = plt.subplots()
|
46 |
+
|
47 |
+
|
48 |
+
# Create a figure and axis
|
49 |
+
fig, ax = plt.subplots()
|
50 |
+
|
51 |
+
# Create the scatter plot
|
52 |
+
scatter = ax.scatter(data['x'], data['y'], c=data['color'], cmap='tab20', s=0.5)
|
53 |
+
|
54 |
+
# Add a colorbar
|
55 |
+
cbar = fig.colorbar(scatter, ax=ax)
|
56 |
+
cbar.set_label('Label')
|
57 |
+
|
58 |
+
# Set labels and title
|
59 |
+
# ax.set_xlabel('X')
|
60 |
+
# ax.set_ylabel('Y')
|
61 |
+
# ax.set_title(f"Loss ra")
|
62 |
+
# ax.set_xlabel("Training steps")
|
63 |
+
# ax.set_ylabel("Loss rate")
|
64 |
+
return fig
|
65 |
+
|
66 |
+
@render.plot()
|
67 |
+
def plot_context_size_scaling():
|
68 |
+
fig = plot_loss_rates(df_gene_varient,input.sample() )
|
69 |
+
if fig:
|
70 |
+
return fig
|
71 |
+
with ui.nav_panel("Histone Modification"):
|
72 |
+
ui.panel_title("Is there a pattern to histone modification?")
|
73 |
+
with ui.layout_columns():
|
74 |
+
with ui.card():
|
75 |
+
ui.input_slider("sample_histone", "sample", 0, df_histone_len, 40)
|
76 |
+
|
77 |
+
|
78 |
+
def plot_histone(df,sample):
|
79 |
+
y_values = generate_2d_sequence(df['seq'].iloc[sample])[0]
|
80 |
+
x_values = generate_2d_sequence(df['seq'].iloc[sample])[1]
|
81 |
+
|
82 |
+
integers = str((np.argwhere(df['labels'][sample] == np.amax(df['labels'][sample]))).flatten().tolist())
|
83 |
+
# Create a DataFrame with the x values, y values, and integers
|
84 |
+
data = {'x': x_values, 'y': y_values, 'color': integers}
|
85 |
+
|
86 |
+
fig, ax = plt.subplots()
|
87 |
+
|
88 |
+
sns.scatterplot(x='x', y='y', hue='color', data=data, palette='viridis', ax=ax)
|
89 |
+
ax.legend()
|
90 |
+
# ax.set_title(f"Loss ra")
|
91 |
+
# ax.set_xlabel("Training steps")
|
92 |
+
# ax.set_ylabel("Loss rate")
|
93 |
+
return fig
|
94 |
+
@render.plot()
|
95 |
+
def plot_histones_two():
|
96 |
+
fig = plot_histone(df_histone,input.sample_histone() )
|
97 |
+
if fig:
|
98 |
+
return fig
|
99 |
+
with ui.nav_panel("Enhancer Annontations"):
|
100 |
+
ui.panel_title("Is there a pattern to enhancer annotations?")
|
101 |
+
with ui.layout_columns():
|
102 |
+
with ui.card():
|
103 |
+
ui.input_slider("sample_enhancer", "sample", 0, df_enhancer_annotation_len, 40)
|
104 |
+
@render.plot()
|
105 |
+
def plot_enhancer():
|
106 |
+
fig = plot_loss_rates(df_enhancer_annotation,input.sample_enhancer() , True)
|
107 |
+
if fig:
|
108 |
+
return fig
|
109 |
+
|
110 |
+
|