from collections import namedtuple import numpy as np from scipy.interpolate import interp1d import torch import matplotlib.pyplot as plt # Mapping of nucleotides to float coordinates mapping_easy = { "A": np.array([0.5, -0.8660254037844386]), "T": np.array([0.5, 0.8660254037844386]), "G": np.array([0.8660254037844386, -0.5]), "C": np.array([0.8660254037844386, 0.5]), "N": np.array([0, 0]), } # coordinates for x+iy Coord = namedtuple("Coord", ["x", "y"]) # coordinates for a CGR encoding CGRCoords = namedtuple("CGRCoords", ["N", "x", "y"]) # coordinates for each nucleotide in the 2d-plane DEFAULT_COORDS = {"A": Coord(1, 1), "C": Coord(-1, 1), "G": Coord(-1, -1), "T": Coord(1, -1)} # Function to convert a DNA sequence to a list of coordinates def _dna_to_coordinates(dna_sequence: str, mapping: dict[str, np.ndarray]) -> np.ndarray: dna_sequence = dna_sequence.upper() coordinates = np.array([mapping.get(nucleotide, mapping["N"]) for nucleotide in dna_sequence]) return coordinates # Function to create the cumulative sum of a list of coordinates def _get_cumulative_coords(mapped_coords): cumulative_coords = np.cumsum(mapped_coords, axis=0) return cumulative_coords def generate_2d_sequence(seq): dna_sequence = seq.upper() mapped_coords = _dna_to_coordinates(dna_sequence, mapping_easy) cumulative_coords = _get_cumulative_coords(mapped_coords) # Scale the input data using standardization x_train = cumulative_coords[:, 0] y_train = cumulative_coords[:, 1] x_train_scaled = (x_train - x_train.mean()) / x_train.std() y_train_scaled = (y_train - y_train.mean()) / y_train.std() scaled_coords = np.column_stack((x_train_scaled, y_train_scaled)) # example["2D_Sequence"] = cumulative_coords.tolist() # example["2D_Sequence_Scaled"] = scaled_coords.tolist() # Interpolate the 2D sequences to have exactly 1000 pairs interpolated_coords = y_train_scaled # default to filter out bad examples if len(scaled_coords) != 1000: try: t = np.linspace(0, 1, len(scaled_coords)) t_new = np.linspace(0, 1, 1000) interp_func_x = interp1d(t, scaled_coords[:, 0], kind="linear") interp_func_y = interp1d(t, scaled_coords[:, 1], kind="linear") interpolated_coords = interp_func_x(t_new) except Exception as e: print(f"Interpolation error: {e}") tensor_2d_rep_y = torch.Tensor(interpolated_coords).reshape(1,1000) return y_train_scaled, x_train_scaled def generate_2d_sequence_small(seq): dna_sequence = seq.upper() mapped_coords = _dna_to_coordinates(dna_sequence, mapping_easy) cumulative_coords = _get_cumulative_coords(mapped_coords) # Scale the input data using standardization x_train = cumulative_coords[:, 0] y_train = cumulative_coords[:, 1] x_train_scaled = (x_train - x_train.mean()) / x_train.std() y_train_scaled = (y_train - y_train.mean()) / y_train.std() scaled_coords = np.column_stack((x_train_scaled, y_train_scaled)) # example["2D_Sequence"] = cumulative_coords.tolist() # example["2D_Sequence_Scaled"] = scaled_coords.tolist() # Interpolate the 2D sequences to have exactly 1000 pairs interpolated_coords = y_train_scaled # default to filter out bad examples if len(scaled_coords) != 1000: try: t = np.linspace(0, 1, len(scaled_coords)) t_new = np.linspace(0, 1, 400) interp_func_x = interp1d(t, scaled_coords[:, 0], kind="linear") interp_func_y = interp1d(t, scaled_coords[:, 1], kind="linear") interpolated_coords = interp_func_y(t_new) except Exception as e: print(f"Interpolation error: {e}") tensor_2d_rep_y = torch.Tensor(interpolated_coords).reshape(400) return tensor_2d_rep_y def plot_seq_full_label(df, filter): ncols = len(filter) unique_ids = df.label_id.unique() print(unique_ids) unique_ids_plot = [id for id in unique_ids if id in filter] print(unique_ids_plot) fig, axs = plt.subplots(ncols=ncols) for i, id in enumerate(unique_ids_plot): # data = (df[df['label_id'] == id].sample((n=3)))['seq'].values[0] # print(data) data = generate_2d_sequence_small(df[df['label_id'] == id].sample(n=1)['seq'].values[0]).numpy() # two_d = generate_2d_sequence(data)[0] axs[i].plot(data) return fig