Spaces:
Runtime error
Runtime error
Commit
·
1832b83
1
Parent(s):
d048f50
Update app.py
Browse files
app.py
CHANGED
@@ -5,22 +5,107 @@
|
|
5 |
# model = GPT4All("wizardlm-13b-v1.1-superhot-8k.ggmlv3.q4_0.bin")
|
6 |
|
7 |
#----------------------------------------------------------------------------------------------------------------------------
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
# Load the model and tokenizer
|
14 |
-
model = AutoModelForCausalLM.from_pretrained(model_directory, from_tf=True)
|
15 |
-
tokenizer = AutoTokenizer.from_pretrained(model_directory, trust_remote_code=True)
|
16 |
|
17 |
-
#
|
18 |
# prompt = "What is a large language model?"
|
19 |
-
#
|
20 |
-
|
21 |
-
#
|
22 |
-
# generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
23 |
-
# print(generated_text)
|
24 |
|
25 |
# ---------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
26 |
# Ignore warnings
|
@@ -45,13 +130,13 @@ logging.set_verbosity(logging.CRITICAL)
|
|
45 |
|
46 |
def generate_text(prompt):
|
47 |
# output = model.generate(input_text)
|
48 |
-
|
49 |
-
|
50 |
# prompt = "What is a large language model?"
|
51 |
-
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
52 |
|
53 |
-
output = model.generate(input_ids, max_length=200, num_return_sequences=1)
|
54 |
-
result = tokenizer.decode(output[0], skip_special_tokens=True)
|
55 |
return result
|
56 |
|
57 |
text_generation_interface = gr.Interface(
|
|
|
5 |
# model = GPT4All("wizardlm-13b-v1.1-superhot-8k.ggmlv3.q4_0.bin")
|
6 |
|
7 |
#----------------------------------------------------------------------------------------------------------------------------
|
8 |
+
# !pip install -q accelerate==0.21.0 peft==0.4.0 bitsandbytes==0.40.2 transformers==4.31.0 trl==0.4.7
|
9 |
+
# import os
|
10 |
+
import torch
|
11 |
+
from datasets import load_dataset
|
12 |
+
from transformers import (
|
13 |
+
AutoModelForCausalLM,
|
14 |
+
AutoTokenizer,
|
15 |
+
BitsAndBytesConfig,
|
16 |
+
HfArgumentParser,
|
17 |
+
TrainingArguments,
|
18 |
+
pipeline,
|
19 |
+
logging,
|
20 |
+
)
|
21 |
+
from peft import LoraConfig, PeftModel
|
22 |
+
from trl import SFTTrainer
|
23 |
+
# -----------------------------------------------------------------------------------------------------------------------------------------------------------------
|
24 |
+
|
25 |
+
# LoRA attention dimension
|
26 |
+
lora_r = 64
|
27 |
+
|
28 |
+
# Alpha parameter for LoRA scaling
|
29 |
+
lora_alpha = 16
|
30 |
+
|
31 |
+
# Dropout probability for LoRA layers
|
32 |
+
lora_dropout = 0.1
|
33 |
+
|
34 |
+
################################################################################
|
35 |
+
# bitsandbytes parameters
|
36 |
+
################################################################################
|
37 |
+
|
38 |
+
# Activate 4-bit precision base model loading
|
39 |
+
use_4bit = True
|
40 |
+
|
41 |
+
# Compute dtype for 4-bit base models
|
42 |
+
bnb_4bit_compute_dtype = "float16"
|
43 |
+
|
44 |
+
# Quantization type (fp4 or nf4)
|
45 |
+
bnb_4bit_quant_type = "nf4"
|
46 |
+
|
47 |
+
# Activate nested quantization for 4-bit base models (double quantization)
|
48 |
+
use_nested_quant = False
|
49 |
+
|
50 |
+
# Load the entire model on the GPU 0
|
51 |
+
device_map = {"": 0}
|
52 |
+
|
53 |
+
#----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
54 |
+
model_name = "DR-DRR/Model_001"
|
55 |
+
model_basename = "pytorch_model-00001-of-00002.bin" # the model is in bin format
|
56 |
+
|
57 |
+
#-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
58 |
+
|
59 |
+
# Load tokenizer and model with QLoRA configuration
|
60 |
+
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
|
61 |
+
|
62 |
+
bnb_config = BitsAndBytesConfig(
|
63 |
+
load_in_4bit=use_4bit,
|
64 |
+
bnb_4bit_quant_type=bnb_4bit_quant_type,
|
65 |
+
bnb_4bit_compute_dtype=compute_dtype,
|
66 |
+
bnb_4bit_use_double_quant=use_nested_quant,
|
67 |
+
)
|
68 |
+
|
69 |
+
# Check GPU compatibility with bfloat16
|
70 |
+
if compute_dtype == torch.float16 and use_4bit:
|
71 |
+
major, _ = torch.cuda.get_device_capability()
|
72 |
+
if major >= 8:
|
73 |
+
print("=" * 80)
|
74 |
+
print("Your GPU supports bfloat16: accelerate training with bf16=True")
|
75 |
+
print("=" * 80)
|
76 |
+
|
77 |
+
# Load base model
|
78 |
+
model = AutoModelForCausalLM.from_pretrained(
|
79 |
+
model_name,
|
80 |
+
quantization_config=bnb_config,
|
81 |
+
device_map=device_map
|
82 |
+
)
|
83 |
+
model.config.use_cache = False
|
84 |
+
model.config.pretraining_tp = 1
|
85 |
+
|
86 |
+
# Load LLaMA tokenizer
|
87 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
88 |
+
tokenizer.pad_token = tokenizer.eos_token
|
89 |
+
tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training
|
90 |
+
|
91 |
+
# Load LoRA configuration
|
92 |
+
peft_config = LoraConfig(
|
93 |
+
lora_alpha=lora_alpha,
|
94 |
+
lora_dropout=lora_dropout,
|
95 |
+
r=lora_r,
|
96 |
+
bias="none",
|
97 |
+
task_type="CAUSAL_LM",
|
98 |
+
)
|
99 |
|
100 |
+
#---------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
101 |
+
# Ignore warnings
|
102 |
+
logging.set_verbosity(logging.CRITICAL)
|
|
|
|
|
|
|
103 |
|
104 |
+
# Run text generation pipeline with our next model
|
105 |
# prompt = "What is a large language model?"
|
106 |
+
# pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
|
107 |
+
# result = pipe(f"<s>[INST] {prompt} [/INST]")
|
108 |
+
# print(result[0]['generated_text'])
|
|
|
|
|
109 |
|
110 |
# ---------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
111 |
# Ignore warnings
|
|
|
130 |
|
131 |
def generate_text(prompt):
|
132 |
# output = model.generate(input_text)
|
133 |
+
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
|
134 |
+
result = pipe(f"<s>[INST] {prompt} [/INST]")
|
135 |
# prompt = "What is a large language model?"
|
136 |
+
# input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
137 |
|
138 |
+
# output = model.generate(input_ids, max_length=200, num_return_sequences=1)
|
139 |
+
# result = tokenizer.decode(output[0], skip_special_tokens=True)
|
140 |
return result
|
141 |
|
142 |
text_generation_interface = gr.Interface(
|