Spaces:
Runtime error
Runtime error
Commit
·
52102b1
1
Parent(s):
6c8e87d
Update app.py
Browse files
app.py
CHANGED
@@ -5,92 +5,13 @@
|
|
5 |
# model = GPT4All("wizardlm-13b-v1.1-superhot-8k.ggmlv3.q4_0.bin")
|
6 |
|
7 |
#----------------------------------------------------------------------------------------------------------------------------
|
8 |
-
|
9 |
-
import torch
|
10 |
-
# from datasets import load_dataset
|
11 |
-
from transformers import (
|
12 |
-
AutoModelForCausalLM,
|
13 |
-
AutoTokenizer,
|
14 |
-
BitsAndBytesConfig,
|
15 |
-
HfArgumentParser,
|
16 |
-
TrainingArguments,
|
17 |
-
pipeline,
|
18 |
-
logging,
|
19 |
-
)
|
20 |
-
from peft import LoraConfig, PeftModel
|
21 |
-
from trl import SFTTrainer
|
22 |
|
23 |
-
# -----------------------------------------------------------------------------------------------------------------------------------------------------------------
|
24 |
-
|
25 |
-
# LoRA attention dimension
|
26 |
-
lora_r = 64
|
27 |
-
|
28 |
-
# Alpha parameter for LoRA scaling
|
29 |
-
lora_alpha = 16
|
30 |
-
|
31 |
-
# Dropout probability for LoRA layers
|
32 |
-
lora_dropout = 0.1
|
33 |
-
|
34 |
-
################################################################################
|
35 |
-
# bitsandbytes parameters
|
36 |
-
################################################################################
|
37 |
-
|
38 |
-
# Activate 4-bit precision base model loading
|
39 |
-
use_4bit = True
|
40 |
-
|
41 |
-
# Compute dtype for 4-bit base models
|
42 |
-
bnb_4bit_compute_dtype = "float32" # Changed to float32 for CPU compatibility
|
43 |
-
|
44 |
-
# Quantization type (fp4 or nf4)
|
45 |
-
bnb_4bit_quant_type = "nf4"
|
46 |
-
|
47 |
-
# Activate nested quantization for 4-bit base models (double quantization)
|
48 |
-
use_nested_quant = False
|
49 |
-
|
50 |
-
# Remove device_map, as it's GPU-specific
|
51 |
-
# device_map = {"": 0}
|
52 |
-
|
53 |
-
# ----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
54 |
model_name = "DR-DRR/Model_001"
|
55 |
-
|
56 |
-
|
57 |
-
# -------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
58 |
-
|
59 |
-
# Load tokenizer and model with QLoRA configuration
|
60 |
-
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
|
61 |
-
|
62 |
-
bnb_config = BitsAndBytesConfig(
|
63 |
-
load_in_4bit=use_4bit,
|
64 |
-
bnb_4bit_quant_type=bnb_4bit_quant_type,
|
65 |
-
bnb_4bit_compute_dtype=compute_dtype,
|
66 |
-
bnb_4bit_use_double_quant=use_nested_quant,
|
67 |
-
bnb_4bit_disable_gpu=True, # Add this line to disable GPU quantization
|
68 |
-
)
|
69 |
-
|
70 |
-
# Remove GPU-specific check for bfloat16
|
71 |
-
|
72 |
-
# Load base model
|
73 |
-
model = AutoModelForCausalLM.from_pretrained(
|
74 |
-
model_name,
|
75 |
-
quantization_config=bnb_config,
|
76 |
-
# Remove device_map for CPU usage
|
77 |
-
)
|
78 |
-
model.config.use_cache = False
|
79 |
-
model.config.pretraining_tp = 1
|
80 |
-
|
81 |
-
# Load LLaMA tokenizer
|
82 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
83 |
-
tokenizer.pad_token = tokenizer.eos_token
|
84 |
-
tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training
|
85 |
|
86 |
-
#
|
87 |
-
peft_config = LoraConfig(
|
88 |
-
lora_alpha=lora_alpha,
|
89 |
-
lora_dropout=lora_dropout,
|
90 |
-
r=lora_r,
|
91 |
-
bias="none",
|
92 |
-
task_type="CAUSAL_LM",
|
93 |
-
)
|
94 |
|
95 |
# ---------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
96 |
# Ignore warnings
|
@@ -115,8 +36,13 @@ logging.set_verbosity(logging.CRITICAL)
|
|
115 |
|
116 |
def generate_text(prompt):
|
117 |
# output = model.generate(input_text)
|
118 |
-
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
|
119 |
-
result = pipe(f"<s>[INST] {prompt} [/INST]")
|
|
|
|
|
|
|
|
|
|
|
120 |
return result
|
121 |
|
122 |
text_generation_interface = gr.Interface(
|
|
|
5 |
# model = GPT4All("wizardlm-13b-v1.1-superhot-8k.ggmlv3.q4_0.bin")
|
6 |
|
7 |
#----------------------------------------------------------------------------------------------------------------------------
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
model_name = "DR-DRR/Model_001"
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
|
|
|
13 |
|
14 |
+
# print(generated_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# ---------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
17 |
# Ignore warnings
|
|
|
36 |
|
37 |
def generate_text(prompt):
|
38 |
# output = model.generate(input_text)
|
39 |
+
# pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
|
40 |
+
# result = pipe(f"<s>[INST] {prompt} [/INST]")
|
41 |
+
# prompt = "What is a large language model?"
|
42 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
43 |
+
|
44 |
+
output = model.generate(input_ids, max_length=200, num_return_sequences=1)
|
45 |
+
result = tokenizer.decode(output[0], skip_special_tokens=True)
|
46 |
return result
|
47 |
|
48 |
text_generation_interface = gr.Interface(
|