Spaces:
Runtime error
Runtime error
Commit
·
8272482
1
Parent(s):
e5c60ed
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,41 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
|
4 |
-
# Specify the directory containing the tokenizer's configuration file (config.json)
|
5 |
-
model_name = "pytorch_model-00001-of-00002.bin"
|
6 |
|
7 |
-
# Initialize the tokenizer
|
8 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_name, local_files_only=True)
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
10 |
-
tokenizer.pad_token = tokenizer.eos_token
|
11 |
-
tokenizer.padding_side = "right"
|
12 |
|
13 |
|
14 |
-
# Initialize the GPT4All model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
def generate_text(input_text):
|
18 |
-
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
|
19 |
-
result = pipe(f"<s>[INST] {input_text} [/INST]")
|
20 |
-
return result[0]['generated_text']
|
21 |
|
22 |
text_generation_interface = gr.Interface(
|
23 |
fn=generate_text,
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
|
4 |
+
# # Specify the directory containing the tokenizer's configuration file (config.json)
|
5 |
+
# model_name = "pytorch_model-00001-of-00002.bin"
|
6 |
|
7 |
+
# # Initialize the tokenizer
|
8 |
+
# # tokenizer = AutoTokenizer.from_pretrained(model_name, local_files_only=True)
|
9 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
10 |
+
# tokenizer.pad_token = tokenizer.eos_token
|
11 |
+
# tokenizer.padding_side = "right"
|
12 |
|
13 |
|
14 |
+
# # Initialize the GPT4All model
|
15 |
+
# model = AutoModelForCausalLM.from_pretrained(model_name)
|
16 |
+
|
17 |
+
# def generate_text(input_text):
|
18 |
+
# pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
|
19 |
+
# result = pipe(f"<s>[INST] {input_text} [/INST]")
|
20 |
+
# return result[0]['generated_text']
|
21 |
+
|
22 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
23 |
+
from fastapi import FastAPI
|
24 |
+
|
25 |
+
app = FastAPI()
|
26 |
+
|
27 |
+
model_name = "pytorch_model-00001-of-00002.bin" # Replace with your Hugging Face model name
|
28 |
+
|
29 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
31 |
+
|
32 |
+
@app.post("/generate/")
|
33 |
+
async def generate_text(prompt: str):
|
34 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
35 |
+
output = model.generate(input_ids, max_length=50, num_return_sequences=1)
|
36 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
37 |
+
return {"generated_text": generated_text}
|
38 |
|
|
|
|
|
|
|
|
|
39 |
|
40 |
text_generation_interface = gr.Interface(
|
41 |
fn=generate_text,
|