DR-Rakshitha commited on
Commit
8272482
·
1 Parent(s): e5c60ed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -12
app.py CHANGED
@@ -1,23 +1,41 @@
1
  import gradio as gr
2
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
3
 
4
- # Specify the directory containing the tokenizer's configuration file (config.json)
5
- model_name = "pytorch_model-00001-of-00002.bin"
6
 
7
- # Initialize the tokenizer
8
- # tokenizer = AutoTokenizer.from_pretrained(model_name, local_files_only=True)
9
- tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
10
- tokenizer.pad_token = tokenizer.eos_token
11
- tokenizer.padding_side = "right"
12
 
13
 
14
- # Initialize the GPT4All model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  model = AutoModelForCausalLM.from_pretrained(model_name)
 
 
 
 
 
 
 
 
16
 
17
- def generate_text(input_text):
18
- pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
19
- result = pipe(f"<s>[INST] {input_text} [/INST]")
20
- return result[0]['generated_text']
21
 
22
  text_generation_interface = gr.Interface(
23
  fn=generate_text,
 
1
  import gradio as gr
2
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
3
 
4
+ # # Specify the directory containing the tokenizer's configuration file (config.json)
5
+ # model_name = "pytorch_model-00001-of-00002.bin"
6
 
7
+ # # Initialize the tokenizer
8
+ # # tokenizer = AutoTokenizer.from_pretrained(model_name, local_files_only=True)
9
+ # tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
10
+ # tokenizer.pad_token = tokenizer.eos_token
11
+ # tokenizer.padding_side = "right"
12
 
13
 
14
+ # # Initialize the GPT4All model
15
+ # model = AutoModelForCausalLM.from_pretrained(model_name)
16
+
17
+ # def generate_text(input_text):
18
+ # pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
19
+ # result = pipe(f"<s>[INST] {input_text} [/INST]")
20
+ # return result[0]['generated_text']
21
+
22
+ from transformers import AutoModelForCausalLM, AutoTokenizer
23
+ from fastapi import FastAPI
24
+
25
+ app = FastAPI()
26
+
27
+ model_name = "pytorch_model-00001-of-00002.bin" # Replace with your Hugging Face model name
28
+
29
  model = AutoModelForCausalLM.from_pretrained(model_name)
30
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
31
+
32
+ @app.post("/generate/")
33
+ async def generate_text(prompt: str):
34
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids
35
+ output = model.generate(input_ids, max_length=50, num_return_sequences=1)
36
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
37
+ return {"generated_text": generated_text}
38
 
 
 
 
 
39
 
40
  text_generation_interface = gr.Interface(
41
  fn=generate_text,