DR-Rakshitha commited on
Commit
c13a07b
·
1 Parent(s): b83c2a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -2,7 +2,7 @@
2
  # from transformers import AutoModelForCausalLM, AutoTokenizer
3
 
4
  from gpt4all import GPT4All
5
- model = GPT4All("./wizardlm-13b-v1.1-superhot-8k.ggmlv3.q4_0.bin")
6
 
7
  # #----------------------------------------------------------------------------------------------------------------------------
8
  # # !pip install -q accelerate==0.21.0 peft==0.4.0 bitsandbytes==0.40.2 transformers==4.31.0 trl==0.4.7
@@ -119,13 +119,13 @@ model = GPT4All("./wizardlm-13b-v1.1-superhot-8k.ggmlv3.q4_0.bin")
119
 
120
 
121
  def generate_text(prompt):
122
- # # output = model.generate(input_text)
123
  # pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
124
  # result = pipe(f"<s>[INST] {prompt} [/INST]")
125
  # # prompt = "What is a large language model?"
126
  # # input_ids = tokenizer.encode(prompt, return_tensors="pt")
127
 
128
- output = model.generate(input_ids, max_length=200, num_return_sequences=1)
129
  # result = tokenizer.decode(output[0], skip_special_tokens=True)
130
  return result
131
 
 
2
  # from transformers import AutoModelForCausalLM, AutoTokenizer
3
 
4
  from gpt4all import GPT4All
5
+ model = GPT4All("wizardlm-13b-v1.1-superhot-8k.ggmlv3.q4_0.bin")
6
 
7
  # #----------------------------------------------------------------------------------------------------------------------------
8
  # # !pip install -q accelerate==0.21.0 peft==0.4.0 bitsandbytes==0.40.2 transformers==4.31.0 trl==0.4.7
 
119
 
120
 
121
  def generate_text(prompt):
122
+ result = model.generate(prompt)
123
  # pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
124
  # result = pipe(f"<s>[INST] {prompt} [/INST]")
125
  # # prompt = "What is a large language model?"
126
  # # input_ids = tokenizer.encode(prompt, return_tensors="pt")
127
 
128
+ # output = model.generate(input_ids, max_length=200, num_return_sequences=1)
129
  # result = tokenizer.decode(output[0], skip_special_tokens=True)
130
  return result
131