DR-Rakshitha commited on
Commit
eb443cd
·
1 Parent(s): 47ae43c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -29
app.py CHANGED
@@ -1,45 +1,25 @@
1
  import gradio as gr
2
- from gpt4all import GPT4All
3
- from transformers import (
4
- AutoModelForCausalLM,
5
- AutoTokenizer,
6
- BitsAndBytesConfig,
7
- HfArgumentParser,
8
- TrainingArguments,
9
- pipeline,
10
- logging,
11
- )
12
 
13
- # Specify the local path to the downloaded model file
14
- model_name = "pytorch_model-00001-of-00002.bin"
15
-
16
- # tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
17
- # tokenizer.pad_token = tokenizer.eos_token
18
- # tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training
19
 
 
20
  tokenizer = AutoTokenizer.from_pretrained(model_name, local_files_only=True)
21
 
22
-
23
  # Initialize the GPT4All model
24
- # model = GPT4All(model_path
25
- model = AutoModelForCausalLM.from_pretrained(
26
- model_name,
27
- quantization_config=bnb_config,
28
- device_map=device_map
29
- )
30
 
31
  def generate_text(input_text):
32
- # output = model.generate(input_text)
33
- # return output
34
  pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
35
- result = pipe(f"<s>[INST] {prompt} [/INST]")
36
- return result
37
 
38
  text_generation_interface = gr.Interface(
39
  fn=generate_text,
40
  inputs=[
41
  gr.inputs.Textbox(label="Input Text"),
42
  ],
43
- outputs=gr.inputs.Textbox(label="Generated Text"),
44
- title="Wizardlm_13b_v1",
45
  ).launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
 
 
 
 
 
 
 
 
3
 
4
+ # Specify the directory containing the tokenizer's configuration file (config.json)
5
+ model_name = "path/to/tokenizer_directory"
 
 
 
 
6
 
7
+ # Initialize the tokenizer
8
  tokenizer = AutoTokenizer.from_pretrained(model_name, local_files_only=True)
9
 
 
10
  # Initialize the GPT4All model
11
+ model = AutoModelForCausalLM.from_pretrained(model_name)
 
 
 
 
 
12
 
13
  def generate_text(input_text):
 
 
14
  pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
15
+ result = pipe(f"<s>[INST] {input_text} [/INST]")
16
+ return result[0]['generated_text']
17
 
18
  text_generation_interface = gr.Interface(
19
  fn=generate_text,
20
  inputs=[
21
  gr.inputs.Textbox(label="Input Text"),
22
  ],
23
+ outputs=gr.outputs.Textbox(label="Generated Text"),
24
+ title="GPT-4 Text Generation",
25
  ).launch()