Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,9 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from model import CNNLSTMClassifier
|
4 |
from utils import extract_frames
|
|
|
|
|
|
|
5 |
|
6 |
model = CNNLSTMClassifier()
|
7 |
model.load_state_dict(torch.load("lbw_classifier.pt", map_location='cpu'))
|
@@ -13,14 +16,39 @@ def predict(video_file):
|
|
13 |
if isinstance(video_file, dict) and "name" in video_file:
|
14 |
video_path = video_file["name"]
|
15 |
else:
|
16 |
-
video_path = video_file
|
17 |
|
|
|
18 |
frames = extract_frames(video_path)
|
19 |
with torch.no_grad():
|
20 |
output = model(frames)
|
21 |
pred = torch.argmax(output, dim=1).item()
|
22 |
prob = torch.softmax(output, dim=1)[0][pred].item()
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
iface = gr.Interface(
|
26 |
fn=predict,
|
|
|
2 |
import torch
|
3 |
from model import CNNLSTMClassifier
|
4 |
from utils import extract_frames
|
5 |
+
import shutil
|
6 |
+
import os
|
7 |
+
import cv2
|
8 |
|
9 |
model = CNNLSTMClassifier()
|
10 |
model.load_state_dict(torch.load("lbw_classifier.pt", map_location='cpu'))
|
|
|
16 |
if isinstance(video_file, dict) and "name" in video_file:
|
17 |
video_path = video_file["name"]
|
18 |
else:
|
19 |
+
video_path = video_file
|
20 |
|
21 |
+
# Predict
|
22 |
frames = extract_frames(video_path)
|
23 |
with torch.no_grad():
|
24 |
output = model(frames)
|
25 |
pred = torch.argmax(output, dim=1).item()
|
26 |
prob = torch.softmax(output, dim=1)[0][pred].item()
|
27 |
+
|
28 |
+
label = f"{classes[pred]} ({prob:.2%})"
|
29 |
+
|
30 |
+
# Create annotated video
|
31 |
+
cap = cv2.VideoCapture(video_path)
|
32 |
+
out_path = "/tmp/annotated_video.mp4"
|
33 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
34 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
35 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
36 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
37 |
+
out = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
|
38 |
+
|
39 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
40 |
+
color = (0, 255, 0) if pred == 1 else (0, 0, 255)
|
41 |
+
|
42 |
+
while True:
|
43 |
+
ret, frame = cap.read()
|
44 |
+
if not ret:
|
45 |
+
break
|
46 |
+
cv2.putText(frame, label, (30, 60), font, 2, color, 4, cv2.LINE_AA)
|
47 |
+
out.write(frame)
|
48 |
+
cap.release()
|
49 |
+
out.release()
|
50 |
+
|
51 |
+
return out_path
|
52 |
|
53 |
iface = gr.Interface(
|
54 |
fn=predict,
|