Spaces:
Sleeping
Sleeping
Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from torchvision import transforms
|
5 |
+
|
6 |
+
def extract_frames(video_path, num_frames=71, resize=(224, 224)):
|
7 |
+
cap = cv2.VideoCapture(video_path)
|
8 |
+
total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
9 |
+
interval = max(total // num_frames, 1)
|
10 |
+
|
11 |
+
frames = []
|
12 |
+
for i in range(num_frames):
|
13 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, i * interval)
|
14 |
+
ret, frame = cap.read()
|
15 |
+
if not ret:
|
16 |
+
break
|
17 |
+
frame = cv2.resize(frame, resize)
|
18 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
19 |
+
frames.append(frame / 255.0)
|
20 |
+
cap.release()
|
21 |
+
|
22 |
+
frames = np.stack(frames, axis=0)
|
23 |
+
frames = torch.tensor(frames, dtype=torch.float32).permute(0, 3, 1, 2) # (T, C, H, W)
|
24 |
+
return frames.unsqueeze(0) # (1, T, C, H, W)
|