TheInCube / app.py
DSatishchandra's picture
Update app.py
71ea7dd verified
raw
history blame
1.99 kB
# app.py
import gradio as gr
import pandas as pd
import numpy as np
from transformers import pipeline
from sklearn.ensemble import RandomForestClassifier
import joblib
# Load fine-tuned Hugging Face model for anomaly detection
anomaly_detection = pipeline("text-classification", model="./fine_tuned_anomaly_model")
# Load the Random Forest model for failure prediction
failure_prediction_model = joblib.load('failure_prediction_model.pkl')
# Function to preprocess logs for anomaly detection
def preprocess_logs(logs):
logs['timestamp'] = pd.to_datetime(logs['timestamp'])
logs['log_message'] = logs['log_message'].str.lower()
return logs
# Function to detect anomalies
def detect_anomaly(logs):
preprocessed_logs = preprocess_logs(logs)
results = []
for log in preprocessed_logs['log_message']:
anomaly_result = anomaly_detection(log)
results.append(anomaly_result[0]['label'])
return results
# Function to predict failures based on historical data and metrics
def predict_failure(device_metrics):
metrics_array = np.array([device_metrics['cpu_usage'], device_metrics['memory_usage'], device_metrics['error_rate']]).reshape(1, -1)
failure_prediction = failure_prediction_model.predict(metrics_array)
return failure_prediction
# Gradio interface to upload log files and check anomaly detection and failure prediction
def process_logs_and_predict(log_file, metrics):
logs = pd.read_json(log_file)
anomalies = detect_anomaly(logs)
failure_pred = predict_failure(metrics)
return f"Anomalies Detected: {anomalies}, Failure Prediction: {failure_pred}"
# Set up Gradio interface for the dashboard
iface = gr.Interface(fn=process_logs_and_predict,
inputs=["file", "json"],
outputs="text",
title="Cisco Device Monitoring",
description="Upload log files to detect anomalies and predict potential device failures.")
iface.launch()