|
from transformers import pipeline |
|
import gradio as gr |
|
from huggingface_hub import login |
|
with open("../../token.txt", "r") as file: |
|
token = file.readline().strip() |
|
|
|
login(token=token, add_to_git_credential=True) |
|
|
|
|
|
pipe = pipeline(model="dacavi/whisper-small-hi") |
|
|
|
def transcribe(audio): |
|
text = pipe(audio)["text"] |
|
return text |
|
|
|
iface = gr.Interface( |
|
fn=transcribe, |
|
inputs=gr.Audio(sources="microphone", type="filepath"), |
|
outputs="text", |
|
title="Whisper Small Hindi", |
|
description="Realtime demo for Hindi speech recognition using a fine-tuned Whisper small model.", |
|
) |
|
|
|
iface.launch() |
|
|