whisper / app.py
Dani
app.py
bd86a75
raw
history blame
661 Bytes
from transformers import pipeline
import gradio as gr
from huggingface_hub import login
with open("../../token.txt", "r") as file:
token = file.readline().strip()
login(token=token, add_to_git_credential=True)
pipe = pipeline(model="dacavi/whisper-small-hi") # change to "your-username/the-name-you-picked"
def transcribe(audio):
text = pipe(audio)["text"]
return text
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(sources="microphone", type="filepath"),
outputs="text",
title="Whisper Small Hindi",
description="Realtime demo for Hindi speech recognition using a fine-tuned Whisper small model.",
)
iface.launch()