File size: 11,052 Bytes
6227608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
from functools import reduce
import itertools
import json
import re
import string
import pandas as pd
from hazm import Normalizer, WordTokenizer

normalizer = Normalizer()
tokenizer = WordTokenizer(separate_emoji=True)


def seprate_emoji_string(txt):
        try:
            oRes = re.compile(u'(['
                              u'\U0001F300-\U0001F64F'
                              u'\U0001F680-\U0001F6FF'
                              u'\u2600-\u26FF\u2700-\u27BF]+)',
                              re.UNICODE)
        except re.error:
            oRes = re.compile(u'(('
                              u'\ud83c[\udf00-\udfff]|'
                              u'\ud83d[\udc00-\ude4f\ude80-\udeff]|'
                              u'[\u2600-\u26FF\u2700-\u27BF])+)',
                              re.UNICODE)

        return oRes.sub(r'  \1  ', txt)

def cleanify(txt):
    txt = txt.strip()
    txt = re.sub('\s+', ' ', txt)
    txt = re.sub('\u200f', '', txt)
    txt = re.sub('‌+', '‌', txt)
    txt = re.sub('‌ ', ' ', txt)
    txt = re.sub(' ‌', ' ', txt)
    txt = normalizer.normalize(txt)
    txt = seprate_emoji_string(txt)
    txt = ' '.join(tokenizer.tokenize(txt))
    return txt




def clean_text_for_lm(txt):
    ignore_chars = '.1234567890!@#$%^&*()_+۱۲۳۴۵۶۷۸۹÷؟×−+?><}،,{":' + string.ascii_lowercase + string.ascii_uppercase
    tokens = txt.split()
    clean_tokens = [t for t in tokens if not (any(ic in t for ic in ignore_chars) or if_emoji(t))]
    return ' '.join(clean_tokens)


def add_to_mapper(mapping_list):
    print(len(mapping_list))
    df = pd.read_csv('resources/mapper.csv', delimiter=',', index_col=None)
    print(df.columns)
    for item in mapping_list:
        df = df.append({'formal': item[1], 'informal': item[0]}, ignore_index=True)
    df.to_csv('resources/mapper.csv', index=False)


def extract_non_convertable_words(corpus_addr, tokenizer, normalizer, transformer, output_addr, vocab):
    f = open(corpus_addr)
    non_convertables = {}
    seen_words = set()
    nim_fasele = '‌'
    for i, line in enumerate(f):
        print(i)
        # if i > 500:
        #     break
        line = normalizer.normalize(line)
        tokens = tokenizer.tokenize(line)
        for t in tokens:
        #     if nim_fasele in t:
        #         print(t)
            if t in seen_words:
                if t in non_convertables:
                    non_convertables[t] += 1
            else:
                candidates = transformer.transform(t, None)
                # if not candidates and any(t.startswith(pre) for pre in ['از', 'در', 'چند', 'هر', 'هیچ', 'هم', 'با', 'بی', 'تا', 'و']):
                #     print(t)
                if not candidates:
                    non_convertables[t] = 1
                seen_words.add(t)
    words_count = sorted([(word, count) for word, count in non_convertables.items()], key=lambda item: item[1], reverse=True)
    words_count = [str(word) + ' ########### ' + str(count) for (word, count) in words_count]
    with open(output_addr, 'w+') as f:
        f.write('\n'.join(words_count))


def generate_irrgular_informal_verbs():
    """
    برمیگرده میوفته برمیداره برمیگردونه درمیاره ایستادن نمیومد وامیسته

    اومد
    نیومد
    اومدی
    نیومدی
    میومدی
    نیومده
    یومد
    میومده
    """

    mapping_verbs = []
    past_ends = ['م', 'ی', 'ه', 'یم', 'ین', 'ید', 'ند', '', 'ن']
    neg = ['ن', '']
    pre = ['می', 'ب']
    pre_verbs = [('بر', 'دار'), ('در', 'یار'), ('وا', 'ست'), ('بر', 'گرد'), ('ور', 'دار'), ('بر', 'گشت')]
    extras = ['ن', 'نمی', 'می']
    mapper = {'ه':'د', 'ن': 'ند', 'ین': 'ید', 'ور': 'بر', 'ست':'ایست', 'وا':'', 'یار':'آور'}
    for item in pre_verbs:
        for pe in past_ends:
            for ex in extras:
                p_end = pe
                item0 = item[0]
                item1 = item[1]
                inf = item0 + ex + item1 + p_end
                inf = inf.replace('یی', 'ی')
                if item0 in mapper:
                    item0 = mapper[item0]
                if item1 in mapper:
                    item1 = mapper[item1]
                if p_end in mapper:
                    p_end = mapper[p_end]
                formal = item0 + ex + item1 + p_end
                formal = formal.replace('می', 'می‌')
                formal = formal.replace('نآ', 'نیا')
                mapping_verbs.append([formal, inf])
    bons = ['یومد', 'یوفت']
    v_mapper = {'یومد': 'یامد', 'یوفت': 'افت'}
    verbs = itertools.product(neg, pre, bons, past_ends)
    for v in verbs:
        if v[0] == 'ن' and v[1] == 'ب' or (v[2] == 'یومد' and v[1] == 'ب'):
            continue
        inf = v[0] + v[1] + v[2] + v[3]
        inf = inf.replace('یی', 'ی')
        pe = v[3]
        if pe in mapper:
            pe = mapper[pe]
        formal = v[0] + v[1]  +  '‌' + v_mapper[v[2]] + pe
        formal = formal.replace('ی‌ی', 'ی')
        formal = formal.replace('یا', 'ی‌آ')
        formal = formal.replace('دد', 'ده')
        formal = formal.replace('ب‌ا', 'بی')
        mapping_verbs.append([formal, inf])
    add_to_mapper(mapping_verbs)



def load_vocab(vocab_addr='resources/words.dat'):
    vocab = {}
    with open(vocab_addr, 'r', encoding='utf-8') as f:
        for line in f:
            try:
                word, freq, p_tags = line.strip().split('\t')
                vocab[word] = {'freq': freq, 'tags': p_tags}
            except:
                word = line.strip()
                vocab[word] = {'freq': 1, 'tags': 'NUM'}
    return vocab

def if_connect(word1, word2):
    not_connect_chars = ['ا', 'د', 'ذ', 'ر', 'ز', 'ژ', 'و']
    if any(w =='' for w in [word1, word2]) or word1[-1] in not_connect_chars:
        return True
    return False
def split_conj_words(word, conjs):
    candidates = set()
    sorted_conjs = sorted(conjs, key=lambda x: len(x), reverse=True)
    for c in sorted_conjs:
        indx = word.find(c)
        if indx != -1 and indx in [0, len(word)-1]:
            pre_w = word[:indx]
            next_w = word[indx+len(c) :]
            if if_connect(pre_w, c) and if_connect(c, next_w):
                cnd = ' '.join([pre_w, c, next_w])
                cnd = cnd.strip()
                candidates.add(cnd)
    return list(candidates)


def is_formal_prefixed(word, vocab):
    not_connect_chars = ['ا', 'د', 'ذ', 'ر', 'ز', 'ژ', 'و']
    nim_fasele = '‌'
    m1 = re.match('(.+)های(م|ت|ش|مان|تان|شان)?$', word)
    m2 = re.match('(.+[ا|و|ی])ی(م|ت|ش|مان|تان|شان)$', word)
    m3 = re.match('(.+[^ا^و^ی])(م|ت|ش|مان|تان|شان)$', word)
    m4 = re.match('(.+)(ها)$', word)
    m5 = re.match('(.+[ه|ی]‌)(اش|ام|ات)$', word)
    if m3 or m2:
        prefix_word = list(filter(lambda m: m is not None, [m3, m2]))[0].group(1)
        if prefix_word in vocab:
            return True
    m_fired = list(filter(lambda m: m is not None, [m1, m4, m5]))
    if len(m_fired) > 0:
        # print(word, m_fired[0].groups())
        prefix_word = m_fired[0].group(1)
        if prefix_word[-1] != nim_fasele and prefix_word[-1] not in not_connect_chars:
            return False
        if prefix_word[-1] == nim_fasele and not (prefix_word[:-1] in vocab):
            return False
        if prefix_word[-1] != nim_fasele and not (prefix_word in vocab):
            return False
        return True
    return False


def spelling_similairty(word):
    all_possible = []
    possible_repeated = get_possible_repeated_word(word)
    all_possible = possible_repeated
    if word in all_possible:
        all_possible.remove(word)
    return all_possible

def add_nim_alef_hat_dictionary(vocab):
    word_with_hat = filter(lambda w: 'آ' in w, vocab)
    word_with_nim = filter(lambda w: '‌' in w, vocab)
    mapper1 = {w.replace('آ', 'ا').replace('‌', ''): w for w in word_with_hat}
    mapper2 = {w.replace('‌', ''): w for w in word_with_nim}
    mapper1.update(mapper2)
    return mapper1

def generate_spell_mapper(vocab):
    hat = 'آ'
    tanvin =  'اً'
    nim =  '‌'
    hamzeh = 'أ'
    hamzeh_y = 'ئ'
    sp_mapper = {hamzeh_y: ['ی'], hat: ['ا'], tanvin: ['ن', 'ا'], nim:['', ' '], hamzeh:['ا', '']}
    special_chars = [hat, tanvin, nim, hamzeh]
    out = {}
    for word in vocab:
        p_words = [word.replace(sp, sp_alt) for sp in special_chars for sp_alt in sp_mapper[sp]]
        spell_errors = []
        p_words = list(set(p_words) - set([word]))
        for pw in p_words:
            if pw in out:
                out[pw].add(word)
            else:
                out[pw] = {word}
    out = {w: list(out[w]) for w in out}
    with open('spell_checker_mapper.json', 'w+', encoding='utf-8') as f:
        json.dump(out, f, ensure_ascii=False, indent=1)



def create_mapper_tanvin_hamze_hat_nim_fasele():
    mapper = {}
    hats_word = open('resources/spell/words_with_hat.txt').read().splitlines()
    nim_words = open('resources/spell/words_with_nim.txt').read().splitlines()
    tanvin_words = open('resources/spell/words_with_tanvin.txt').read().splitlines()
    hat_ch = 'آ'
    nim_fasele = '‌'
    for w in hats_word:
        w_without_h = w.replace(hat_ch, 'ا')
        mapper[w_without_h] = w
    for w in nim_words:
        w_without_nim = w.remove(nim_fasele)
        mapper[w_without_nim] = w
        w_space_instead_nim = w.replace(nim_fasele, ' ')
        mapper[w_space_instead_nim] = w

def extract_lemma_nim_fasele_words(word, vocab):
        prefixs = ['اون']
        postfixs = {'ست': 'است', 'هام':'هایم', 'ام':'ام', 'ها':'ها', 'هامون':'هایمان', 'ترین': 'ترین', 'هایشان':'هایشان'}
        tokens = word.split('‌')
        index = 0
        for i in range(len(tokens)):
            index = i
            if tokens[i] not in prefixs:
                break

        for i in range(len(tokens), 0, -1):
            current_tok = '‌'.join(tokens[index:i])
            if current_tok in vocab or  tokens[i-1] not in postfixs:
                return current_tok


def if_emoji(text):
    # Wide UCS-4 build
    try:
        oRes = re.compile(u'(['
                          u'\U0001F300-\U0001F64F'
                          u'\U0001F680-\U0001F6FF'
                          u'\u2600-\u26FF\u2700-\u27BF]+)',
                          re.UNICODE)

    except re.error:
        # Narrow UCS-2 build
        oRes = re.compile(u'(('
                          u'\ud83c[\udf00-\udfff]|'
                          u'\ud83d[\udc00-\ude4f\ude80-\udeff]|'
                          u'[\u2600-\u26FF\u2700-\u27BF])+)',
                          re.UNICODE)

    return oRes.findall(text)


def powerset(lst):
    return reduce(lambda result, x: result + [subset + [x] for subset in result],
                  lst, [[]])