File size: 11,052 Bytes
6227608 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
from functools import reduce
import itertools
import json
import re
import string
import pandas as pd
from hazm import Normalizer, WordTokenizer
normalizer = Normalizer()
tokenizer = WordTokenizer(separate_emoji=True)
def seprate_emoji_string(txt):
try:
oRes = re.compile(u'(['
u'\U0001F300-\U0001F64F'
u'\U0001F680-\U0001F6FF'
u'\u2600-\u26FF\u2700-\u27BF]+)',
re.UNICODE)
except re.error:
oRes = re.compile(u'(('
u'\ud83c[\udf00-\udfff]|'
u'\ud83d[\udc00-\ude4f\ude80-\udeff]|'
u'[\u2600-\u26FF\u2700-\u27BF])+)',
re.UNICODE)
return oRes.sub(r' \1 ', txt)
def cleanify(txt):
txt = txt.strip()
txt = re.sub('\s+', ' ', txt)
txt = re.sub('\u200f', '', txt)
txt = re.sub('+', '', txt)
txt = re.sub(' ', ' ', txt)
txt = re.sub(' ', ' ', txt)
txt = normalizer.normalize(txt)
txt = seprate_emoji_string(txt)
txt = ' '.join(tokenizer.tokenize(txt))
return txt
def clean_text_for_lm(txt):
ignore_chars = '.1234567890!@#$%^&*()_+۱۲۳۴۵۶۷۸۹÷؟×−+?><}،,{":' + string.ascii_lowercase + string.ascii_uppercase
tokens = txt.split()
clean_tokens = [t for t in tokens if not (any(ic in t for ic in ignore_chars) or if_emoji(t))]
return ' '.join(clean_tokens)
def add_to_mapper(mapping_list):
print(len(mapping_list))
df = pd.read_csv('resources/mapper.csv', delimiter=',', index_col=None)
print(df.columns)
for item in mapping_list:
df = df.append({'formal': item[1], 'informal': item[0]}, ignore_index=True)
df.to_csv('resources/mapper.csv', index=False)
def extract_non_convertable_words(corpus_addr, tokenizer, normalizer, transformer, output_addr, vocab):
f = open(corpus_addr)
non_convertables = {}
seen_words = set()
nim_fasele = ''
for i, line in enumerate(f):
print(i)
# if i > 500:
# break
line = normalizer.normalize(line)
tokens = tokenizer.tokenize(line)
for t in tokens:
# if nim_fasele in t:
# print(t)
if t in seen_words:
if t in non_convertables:
non_convertables[t] += 1
else:
candidates = transformer.transform(t, None)
# if not candidates and any(t.startswith(pre) for pre in ['از', 'در', 'چند', 'هر', 'هیچ', 'هم', 'با', 'بی', 'تا', 'و']):
# print(t)
if not candidates:
non_convertables[t] = 1
seen_words.add(t)
words_count = sorted([(word, count) for word, count in non_convertables.items()], key=lambda item: item[1], reverse=True)
words_count = [str(word) + ' ########### ' + str(count) for (word, count) in words_count]
with open(output_addr, 'w+') as f:
f.write('\n'.join(words_count))
def generate_irrgular_informal_verbs():
"""
برمیگرده میوفته برمیداره برمیگردونه درمیاره ایستادن نمیومد وامیسته
اومد
نیومد
اومدی
نیومدی
میومدی
نیومده
یومد
میومده
"""
mapping_verbs = []
past_ends = ['م', 'ی', 'ه', 'یم', 'ین', 'ید', 'ند', '', 'ن']
neg = ['ن', '']
pre = ['می', 'ب']
pre_verbs = [('بر', 'دار'), ('در', 'یار'), ('وا', 'ست'), ('بر', 'گرد'), ('ور', 'دار'), ('بر', 'گشت')]
extras = ['ن', 'نمی', 'می']
mapper = {'ه':'د', 'ن': 'ند', 'ین': 'ید', 'ور': 'بر', 'ست':'ایست', 'وا':'', 'یار':'آور'}
for item in pre_verbs:
for pe in past_ends:
for ex in extras:
p_end = pe
item0 = item[0]
item1 = item[1]
inf = item0 + ex + item1 + p_end
inf = inf.replace('یی', 'ی')
if item0 in mapper:
item0 = mapper[item0]
if item1 in mapper:
item1 = mapper[item1]
if p_end in mapper:
p_end = mapper[p_end]
formal = item0 + ex + item1 + p_end
formal = formal.replace('می', 'می')
formal = formal.replace('نآ', 'نیا')
mapping_verbs.append([formal, inf])
bons = ['یومد', 'یوفت']
v_mapper = {'یومد': 'یامد', 'یوفت': 'افت'}
verbs = itertools.product(neg, pre, bons, past_ends)
for v in verbs:
if v[0] == 'ن' and v[1] == 'ب' or (v[2] == 'یومد' and v[1] == 'ب'):
continue
inf = v[0] + v[1] + v[2] + v[3]
inf = inf.replace('یی', 'ی')
pe = v[3]
if pe in mapper:
pe = mapper[pe]
formal = v[0] + v[1] + '' + v_mapper[v[2]] + pe
formal = formal.replace('یی', 'ی')
formal = formal.replace('یا', 'یآ')
formal = formal.replace('دد', 'ده')
formal = formal.replace('با', 'بی')
mapping_verbs.append([formal, inf])
add_to_mapper(mapping_verbs)
def load_vocab(vocab_addr='resources/words.dat'):
vocab = {}
with open(vocab_addr, 'r', encoding='utf-8') as f:
for line in f:
try:
word, freq, p_tags = line.strip().split('\t')
vocab[word] = {'freq': freq, 'tags': p_tags}
except:
word = line.strip()
vocab[word] = {'freq': 1, 'tags': 'NUM'}
return vocab
def if_connect(word1, word2):
not_connect_chars = ['ا', 'د', 'ذ', 'ر', 'ز', 'ژ', 'و']
if any(w =='' for w in [word1, word2]) or word1[-1] in not_connect_chars:
return True
return False
def split_conj_words(word, conjs):
candidates = set()
sorted_conjs = sorted(conjs, key=lambda x: len(x), reverse=True)
for c in sorted_conjs:
indx = word.find(c)
if indx != -1 and indx in [0, len(word)-1]:
pre_w = word[:indx]
next_w = word[indx+len(c) :]
if if_connect(pre_w, c) and if_connect(c, next_w):
cnd = ' '.join([pre_w, c, next_w])
cnd = cnd.strip()
candidates.add(cnd)
return list(candidates)
def is_formal_prefixed(word, vocab):
not_connect_chars = ['ا', 'د', 'ذ', 'ر', 'ز', 'ژ', 'و']
nim_fasele = ''
m1 = re.match('(.+)های(م|ت|ش|مان|تان|شان)?$', word)
m2 = re.match('(.+[ا|و|ی])ی(م|ت|ش|مان|تان|شان)$', word)
m3 = re.match('(.+[^ا^و^ی])(م|ت|ش|مان|تان|شان)$', word)
m4 = re.match('(.+)(ها)$', word)
m5 = re.match('(.+[ه|ی])(اش|ام|ات)$', word)
if m3 or m2:
prefix_word = list(filter(lambda m: m is not None, [m3, m2]))[0].group(1)
if prefix_word in vocab:
return True
m_fired = list(filter(lambda m: m is not None, [m1, m4, m5]))
if len(m_fired) > 0:
# print(word, m_fired[0].groups())
prefix_word = m_fired[0].group(1)
if prefix_word[-1] != nim_fasele and prefix_word[-1] not in not_connect_chars:
return False
if prefix_word[-1] == nim_fasele and not (prefix_word[:-1] in vocab):
return False
if prefix_word[-1] != nim_fasele and not (prefix_word in vocab):
return False
return True
return False
def spelling_similairty(word):
all_possible = []
possible_repeated = get_possible_repeated_word(word)
all_possible = possible_repeated
if word in all_possible:
all_possible.remove(word)
return all_possible
def add_nim_alef_hat_dictionary(vocab):
word_with_hat = filter(lambda w: 'آ' in w, vocab)
word_with_nim = filter(lambda w: '' in w, vocab)
mapper1 = {w.replace('آ', 'ا').replace('', ''): w for w in word_with_hat}
mapper2 = {w.replace('', ''): w for w in word_with_nim}
mapper1.update(mapper2)
return mapper1
def generate_spell_mapper(vocab):
hat = 'آ'
tanvin = 'اً'
nim = ''
hamzeh = 'أ'
hamzeh_y = 'ئ'
sp_mapper = {hamzeh_y: ['ی'], hat: ['ا'], tanvin: ['ن', 'ا'], nim:['', ' '], hamzeh:['ا', '']}
special_chars = [hat, tanvin, nim, hamzeh]
out = {}
for word in vocab:
p_words = [word.replace(sp, sp_alt) for sp in special_chars for sp_alt in sp_mapper[sp]]
spell_errors = []
p_words = list(set(p_words) - set([word]))
for pw in p_words:
if pw in out:
out[pw].add(word)
else:
out[pw] = {word}
out = {w: list(out[w]) for w in out}
with open('spell_checker_mapper.json', 'w+', encoding='utf-8') as f:
json.dump(out, f, ensure_ascii=False, indent=1)
def create_mapper_tanvin_hamze_hat_nim_fasele():
mapper = {}
hats_word = open('resources/spell/words_with_hat.txt').read().splitlines()
nim_words = open('resources/spell/words_with_nim.txt').read().splitlines()
tanvin_words = open('resources/spell/words_with_tanvin.txt').read().splitlines()
hat_ch = 'آ'
nim_fasele = ''
for w in hats_word:
w_without_h = w.replace(hat_ch, 'ا')
mapper[w_without_h] = w
for w in nim_words:
w_without_nim = w.remove(nim_fasele)
mapper[w_without_nim] = w
w_space_instead_nim = w.replace(nim_fasele, ' ')
mapper[w_space_instead_nim] = w
def extract_lemma_nim_fasele_words(word, vocab):
prefixs = ['اون']
postfixs = {'ست': 'است', 'هام':'هایم', 'ام':'ام', 'ها':'ها', 'هامون':'هایمان', 'ترین': 'ترین', 'هایشان':'هایشان'}
tokens = word.split('')
index = 0
for i in range(len(tokens)):
index = i
if tokens[i] not in prefixs:
break
for i in range(len(tokens), 0, -1):
current_tok = ''.join(tokens[index:i])
if current_tok in vocab or tokens[i-1] not in postfixs:
return current_tok
def if_emoji(text):
# Wide UCS-4 build
try:
oRes = re.compile(u'(['
u'\U0001F300-\U0001F64F'
u'\U0001F680-\U0001F6FF'
u'\u2600-\u26FF\u2700-\u27BF]+)',
re.UNICODE)
except re.error:
# Narrow UCS-2 build
oRes = re.compile(u'(('
u'\ud83c[\udf00-\udfff]|'
u'\ud83d[\udc00-\ude4f\ude80-\udeff]|'
u'[\u2600-\u26FF\u2700-\u27BF])+)',
re.UNICODE)
return oRes.findall(text)
def powerset(lst):
return reduce(lambda result, x: result + [subset + [x] for subset in result],
lst, [[]]) |