|
import subprocess |
|
|
|
subprocess.run( |
|
'pip install flash-attn --no-build-isolation', |
|
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, |
|
shell=True |
|
) |
|
import os |
|
import re |
|
import time |
|
import torch |
|
import spaces |
|
import gradio as gr |
|
from threading import Thread |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
BitsAndBytesConfig, |
|
TextIteratorStreamer |
|
) |
|
|
|
|
|
MODEL_ID = "CohereForAI/aya-expanse-32b" |
|
DEFAULT_SYSTEM_PROMPT = """You are a highly intelligent Bilingual assistant who is fluent in Arabic and English.""" |
|
|
|
TITLE = "<h1><center>Mawared T Assistant</center></h1>" |
|
PLACEHOLDER = "Ask me anything! I'll think through it step by step." |
|
|
|
CSS = """ |
|
.duplicate-button { |
|
margin: auto !important; |
|
color: white !important; |
|
background: black !important; |
|
border-radius: 100vh !important; |
|
} |
|
h3 { |
|
text-align: center; |
|
} |
|
.message-wrap { |
|
overflow-x: auto; |
|
} |
|
.message-wrap p { |
|
margin-bottom: 1em; |
|
} |
|
.message-wrap pre { |
|
background-color: #f6f8fa; |
|
border-radius: 3px; |
|
padding: 16px; |
|
overflow-x: auto; |
|
} |
|
.message-wrap code { |
|
background-color: rgba(175,184,193,0.2); |
|
border-radius: 3px; |
|
padding: 0.2em 0.4em; |
|
font-family: monospace; |
|
} |
|
.custom-tag { |
|
color: #0066cc; |
|
font-weight: bold; |
|
} |
|
.chat-area { |
|
height: 500px !important; |
|
overflow-y: auto !important; |
|
} |
|
""" |
|
|
|
def initialize_model(): |
|
"""Initialize the model with appropriate configurations""" |
|
quantization_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=True |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) |
|
if tokenizer.pad_token_id is None: |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_ID, |
|
torch_dtype=torch.float16, |
|
device_map="cuda", |
|
attn_implementation="flash_attention_2", |
|
quantization_config=quantization_config |
|
|
|
) |
|
|
|
return model, tokenizer |
|
|
|
def format_text(text): |
|
"""Format text with proper spacing and tag highlighting (but keep tags visible)""" |
|
tag_patterns = [ |
|
(r'<Thinking>', '\n<Thinking>\n'), |
|
(r'</Thinking>', '\n</Thinking>\n'), |
|
(r'<Critique>', '\n<Critique>\n'), |
|
(r'</Critique>', '\n</Critique>\n'), |
|
(r'<Revising>', '\n<Revising>\n'), |
|
(r'</Revising>', '\n</Revising>\n'), |
|
(r'<Final>', '\n<Final>\n'), |
|
(r'</Final>', '\n</Final>\n') |
|
] |
|
|
|
formatted = text |
|
for pattern, replacement in tag_patterns: |
|
formatted = re.sub(pattern, replacement, formatted) |
|
|
|
formatted = '\n'.join(line for line in formatted.split('\n') if line.strip()) |
|
|
|
return formatted |
|
|
|
def format_chat_history(history): |
|
"""Format chat history for display, keeping tags visible""" |
|
formatted = [] |
|
for user_msg, assistant_msg in history: |
|
formatted.append(f"User: {user_msg}") |
|
if assistant_msg: |
|
formatted.append(f"Assistant: {assistant_msg}") |
|
return "\n\n".join(formatted) |
|
|
|
def create_examples(): |
|
"""Create example queries for the UI""" |
|
return [ |
|
"Explain the concept of artificial intelligence.", |
|
"How does photosynthesis work?", |
|
"What are the main causes of climate change?", |
|
"Describe the process of protein synthesis.", |
|
"What are the key features of a democratic government?", |
|
"Explain the theory of relativity.", |
|
"How do vaccines work to prevent diseases?", |
|
"What are the major events of World War II?", |
|
"Describe the structure of a human cell.", |
|
"What is the role of DNA in genetics?" |
|
] |
|
|
|
@spaces.GPU(duration=660) |
|
def chat_response( |
|
message: str, |
|
history: list, |
|
chat_display: str, |
|
system_prompt: str, |
|
temperature: float = 1.0, |
|
max_new_tokens: int = 4000, |
|
top_p: float = 0.8, |
|
top_k: int = 40, |
|
penalty: float = 1.2, |
|
): |
|
"""Generate chat responses, keeping tags visible in the output""" |
|
conversation = [ |
|
{"role": "system", "content": system_prompt} |
|
] |
|
|
|
for prompt, answer in history: |
|
conversation.extend([ |
|
{"role": "user", "content": prompt}, |
|
{"role": "assistant", "content": answer} |
|
]) |
|
|
|
conversation.append({"role": "user", "content": message}) |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
conversation, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
).to(model.device) |
|
|
|
streamer = TextIteratorStreamer( |
|
tokenizer, |
|
timeout=60.0, |
|
skip_prompt=True, |
|
skip_special_tokens=True |
|
) |
|
|
|
generate_kwargs = dict( |
|
input_ids=input_ids, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=False if temperature == 0 else True, |
|
top_p=top_p, |
|
top_k=top_k, |
|
temperature=temperature, |
|
repetition_penalty=penalty, |
|
streamer=streamer, |
|
) |
|
|
|
buffer = "" |
|
|
|
with torch.no_grad(): |
|
thread = Thread(target=model.generate, kwargs=generate_kwargs) |
|
thread.start() |
|
|
|
history = history + [[message, ""]] |
|
|
|
for new_text in streamer: |
|
buffer += new_text |
|
formatted_buffer = format_text(buffer) |
|
history[-1][1] = formatted_buffer |
|
chat_display = format_chat_history(history) |
|
|
|
yield history, chat_display |
|
|
|
def process_example(example: str) -> tuple: |
|
"""Process example query and return empty history and updated display""" |
|
return [], f"User: {example}\n\n" |
|
|
|
def main(): |
|
"""Main function to set up and launch the Gradio interface""" |
|
global model, tokenizer |
|
model, tokenizer = initialize_model() |
|
|
|
with gr.Blocks(css=CSS, theme="soft") as demo: |
|
gr.HTML(TITLE) |
|
gr.DuplicateButton( |
|
value="Duplicate Space for private use", |
|
elem_classes="duplicate-button" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
chat_history = gr.State([]) |
|
chat_display = gr.TextArea( |
|
value="", |
|
label="Chat History", |
|
interactive=False, |
|
elem_classes=["chat-area"], |
|
) |
|
|
|
message = gr.TextArea( |
|
placeholder=PLACEHOLDER, |
|
label="Your message", |
|
lines=3 |
|
) |
|
|
|
with gr.Row(): |
|
submit = gr.Button("Send") |
|
clear = gr.Button("Clear") |
|
|
|
with gr.Accordion("⚙️ Advanced Settings", open=False): |
|
system_prompt = gr.TextArea( |
|
value=DEFAULT_SYSTEM_PROMPT, |
|
label="System Prompt", |
|
lines=5, |
|
) |
|
temperature = gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.2, |
|
label="Temperature", |
|
) |
|
max_tokens = gr.Slider( |
|
minimum=128, |
|
maximum=32000, |
|
step=128, |
|
value=4000, |
|
label="Max Tokens", |
|
) |
|
top_p = gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
step=0.1, |
|
value=0.8, |
|
label="Top-p", |
|
) |
|
top_k = gr.Slider( |
|
minimum=1, |
|
maximum=100, |
|
step=1, |
|
value=40, |
|
label="Top-k", |
|
) |
|
penalty = gr.Slider( |
|
minimum=1.0, |
|
maximum=2.0, |
|
step=0.1, |
|
value=1.2, |
|
label="Repetition Penalty", |
|
) |
|
|
|
examples = gr.Examples( |
|
examples=create_examples(), |
|
inputs=[message], |
|
outputs=[chat_history, chat_display], |
|
fn=process_example, |
|
cache_examples=False, |
|
) |
|
|
|
|
|
submit_click = submit.click( |
|
chat_response, |
|
inputs=[ |
|
message, |
|
chat_history, |
|
chat_display, |
|
system_prompt, |
|
temperature, |
|
max_tokens, |
|
top_p, |
|
top_k, |
|
penalty, |
|
], |
|
outputs=[chat_history, chat_display], |
|
show_progress=True, |
|
) |
|
|
|
message.submit( |
|
chat_response, |
|
inputs=[ |
|
message, |
|
chat_history, |
|
chat_display, |
|
system_prompt, |
|
temperature, |
|
max_tokens, |
|
top_p, |
|
top_k, |
|
penalty, |
|
], |
|
outputs=[chat_history, chat_display], |
|
show_progress=True, |
|
) |
|
|
|
clear.click( |
|
lambda: ([], ""), |
|
outputs=[chat_history, chat_display], |
|
show_progress=True, |
|
) |
|
|
|
submit_click.then(lambda: "", outputs=message) |
|
message.submit(lambda: "", outputs=message) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
demo = main() |
|
demo.launch() |