|
import { createLlamaPrompt } from "@/lib/createLlamaPrompt" |
|
import { dirtyLLMResponseCleaner } from "@/lib/dirtyLLMResponseCleaner" |
|
import { dirtyLLMJsonParser } from "@/lib/dirtyLLMJsonParser" |
|
import { dirtyCaptionCleaner } from "@/lib/dirtyCaptionCleaner" |
|
|
|
import { predict } from "./predict" |
|
import { Preset } from "../engine/presets" |
|
import { LLMResponse } from "@/types" |
|
import { cleanJson } from "@/lib/cleanJson" |
|
|
|
export const getStory = async ({ |
|
preset, |
|
prompt = "", |
|
}: { |
|
preset: Preset; |
|
prompt: string; |
|
}): Promise<LLMResponse> => { |
|
|
|
const query = createLlamaPrompt([ |
|
{ |
|
role: "system", |
|
content: [ |
|
`You are a comic book author specialized in ${preset.llmPrompt}`, |
|
`Please write detailed drawing instructions and a one-sentence short caption for the 4 panels of a new silent comic book page.`, |
|
`Give your response as a JSON array like this: \`Array<{ panel: number; instructions: string; caption: string}>\`.`, |
|
|
|
`Be brief in your 4 instructions and captions, don't add your own comments. Be straight to the point, and never reply things like "Sure, I can.." etc.` |
|
].filter(item => item).join("\n") |
|
}, |
|
{ |
|
role: "user", |
|
content: `The story is: ${prompt}`, |
|
} |
|
]) + "```json\n[" |
|
|
|
|
|
let result = "" |
|
|
|
try { |
|
result = await predict(query) |
|
if (!result.trim().length) { |
|
throw new Error("empty result!") |
|
} |
|
} catch (err) { |
|
console.log(`prediction of the story failed, trying again..`) |
|
try { |
|
result = await predict(query+".") |
|
if (!result.trim().length) { |
|
throw new Error("empty result!") |
|
} |
|
} catch (err) { |
|
console.error(`prediction of the story failed again!`) |
|
throw new Error(`failed to generate the story ${err}`) |
|
} |
|
} |
|
|
|
console.log("Raw response from LLM:", result) |
|
const tmp = cleanJson(result) |
|
|
|
let llmResponse: LLMResponse = [] |
|
|
|
try { |
|
llmResponse = dirtyLLMJsonParser(tmp) |
|
} catch (err) { |
|
console.log(`failed to read LLM response: ${err}`) |
|
|
|
|
|
|
|
|
|
llmResponse = ( |
|
tmp.split("*") |
|
.map(item => item.trim()) |
|
.map((cap, i) => ({ |
|
panel: i, |
|
caption: cap, |
|
instructions: cap, |
|
})) |
|
) |
|
} |
|
|
|
return llmResponse.map(res => dirtyCaptionCleaner(res)) |
|
} |