import { createLlamaPrompt } from "@/lib/createLlamaPrompt" import { dirtyLLMResponseCleaner } from "@/lib/dirtyLLMResponseCleaner" import { dirtyLLMJsonParser } from "@/lib/dirtyLLMJsonParser" import { dirtyCaptionCleaner } from "@/lib/dirtyCaptionCleaner" import { predict } from "./predict" import { Preset } from "../engine/presets" export const getStory = async ({ preset, prompt = "", }: { preset: Preset; prompt: string; }): Promise => { const query = createLlamaPrompt([ { role: "system", content: [ `You are a comic book author specialized in ${preset.llmPrompt}`, `Please generate detailed drawing instructions for the 4 panels of a new silent comic book page.`, `Give your response as a JSON array like this: \`Array<{ panel: number; caption: string}>\`.`, // `Give your response as Markdown bullet points.`, `Be brief in your caption don't add your own comments. Be straight to the point, and never reply things like "Sure, I can.." etc.` ].filter(item => item).join("\n") }, { role: "user", content: `The story is: ${prompt}`, } ]) let result = "" try { result = await predict(query) if (!result.trim().length) { throw new Error("empty result!") } } catch (err) { console.log(`prediction of the story failed, trying again..`) try { result = await predict(query+".") if (!result.trim().length) { throw new Error("empty result!") } } catch (err) { console.error(`prediction of the story failed again!`) throw new Error(`failed to generate the story ${err}`) } } console.log("Raw response from LLM:", result) const tmp = dirtyLLMResponseCleaner(result) let captions: string[] = [] try { captions = dirtyLLMJsonParser(tmp) } catch (err) { console.log(`failed to read LLM response: ${err}`) // it is possible that the LLM has generated multiple JSON files like this: /* [ { "panel": 1, "caption": "A samurai stands at the edge of a bustling street in San Francisco, looking out of place among the hippies and beatniks." } ] [ { "panel": 2, "caption": "The samurai spots a group of young people playing music on the sidewalk. He approaches them, intrigued." } ] */ try { // in that case, we can try to repair it like so: let strategy2 = `[${tmp.split("[").pop() || ""}` strategy2.replaceAll("[", ",") captions = dirtyLLMJsonParser(strategy2) } catch (err2) { // in case of failure here, it might be because the LLM hallucinated a completely different response, // such as markdown. There is no real solution.. but we can try a fallback: captions = ( tmp.split("*") .map(item => item.replaceAll("[", "[").replaceAll("]", "]").trim()) ) } } return captions.map(caption => dirtyCaptionCleaner(caption)) }