File size: 5,379 Bytes
8ccf632
 
 
 
 
76d8871
06f0278
76d8871
06f0278
 
8ccf632
 
76d8871
 
 
 
bc0adb1
8ccf632
06f0278
8ccf632
76d8871
 
4bc77d9
 
76d8871
54192f0
 
8ccf632
76d8871
 
 
 
 
 
 
 
 
 
 
 
 
8ccf632
4bc77d9
 
 
8ccf632
 
 
 
 
4bc77d9
 
8ccf632
 
 
4bc77d9
8ccf632
 
4bc77d9
 
8ccf632
 
 
 
 
 
4bc77d9
8ccf632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b213a9c
 
 
 
 
ceb48e8
 
b213a9c
8ccf632
 
 
 
 
 
b213a9c
8ccf632
 
 
 
0a779d1
8ccf632
 
 
 
 
 
2b62414
8ccf632
b213a9c
8ccf632
 
 
9aa8809
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import  DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
torch.cuda.empty_cache()

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

#@spaces.GPU(duration=75)
@spaces.GPU(enable_queue=True)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    
    for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
            output_type="pil",
            good_vae=good_vae,
        ):
            yield img, seed
    
examples = [
    "Super-Realistic potrait of Ariana Grande standing at photoshoot location, worn a detailed texture chic casual outfit, Cinematic lighting, accent lighting, 35mm lens, beautiful",
    "full body pose  candid photo of  20 years old english schoolgirl , petite body, perky ,  wearing only a sexy  string and bra,  light straight blond  hair standing in bathroom,   morning atmosphere, (Realistic fingers:0.5). vibrent colored room , The entire room is well-lit, with no shadows obscuring her features. The background is blured.  masterpiece 4 K",
    "A woman with long brunette hair is seated on a large tree branch in a park. She's dressed in a simple white, spaghetti strap crop top with a plunging neckline. Her legs are bent up revealing her smooth skin under her flowing white skirt. Her expression is relaxed, with a slight smile playing on her lips. The background of the image reveals a serene setting with trees and greenery. The lighting in the scene is natural, suggesting an overcast day with soft, diffused light casting gentle shadows around the woman.",
]

css="""
#col-container {
    margin: 0 auto;
     min-width: 520px;
    max-width: 1200px;
}
"""

with gr.Blocks(css=css, theme="Yntec/HaleyCH_Theme_Orange") as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# Black-forest-labs/FLUX.1-schnell <br>
Our Easy App using the latest Flux models""")
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=10,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
        
        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result, seed]
    )

demo.launch()