Spaces:
Runtime error
Runtime error
File size: 5,379 Bytes
8ccf632 76d8871 06f0278 76d8871 06f0278 8ccf632 76d8871 bc0adb1 8ccf632 06f0278 8ccf632 76d8871 4bc77d9 76d8871 54192f0 8ccf632 76d8871 8ccf632 4bc77d9 8ccf632 4bc77d9 8ccf632 4bc77d9 8ccf632 4bc77d9 8ccf632 4bc77d9 8ccf632 b213a9c ceb48e8 b213a9c 8ccf632 b213a9c 8ccf632 0a779d1 8ccf632 2b62414 8ccf632 b213a9c 8ccf632 9aa8809 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
torch.cuda.empty_cache()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
#@spaces.GPU(duration=75)
@spaces.GPU(enable_queue=True)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil",
good_vae=good_vae,
):
yield img, seed
examples = [
"Super-Realistic potrait of Ariana Grande standing at photoshoot location, worn a detailed texture chic casual outfit, Cinematic lighting, accent lighting, 35mm lens, beautiful",
"full body pose candid photo of 20 years old english schoolgirl , petite body, perky , wearing only a sexy string and bra, light straight blond hair standing in bathroom, morning atmosphere, (Realistic fingers:0.5). vibrent colored room , The entire room is well-lit, with no shadows obscuring her features. The background is blured. masterpiece 4 K",
"A woman with long brunette hair is seated on a large tree branch in a park. She's dressed in a simple white, spaghetti strap crop top with a plunging neckline. Her legs are bent up revealing her smooth skin under her flowing white skirt. Her expression is relaxed, with a slight smile playing on her lips. The background of the image reveals a serene setting with trees and greenery. The lighting in the scene is natural, suggesting an overcast day with soft, diffused light casting gentle shadows around the woman.",
]
css="""
#col-container {
margin: 0 auto;
min-width: 520px;
max-width: 1200px;
}
"""
with gr.Blocks(css=css, theme="Yntec/HaleyCH_Theme_Orange") as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# Black-forest-labs/FLUX.1-schnell <br>
Our Easy App using the latest Flux models""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=10,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.launch() |