import gradio as gr import numpy as np import random import spaces import torch from diffusers import DiffusionPipeline dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 @spaces.GPU(duration=120) def infer(prompt, seed=765449273, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt = prompt, width = width, height = height, num_inference_steps = num_inference_steps, generator = generator, guidance_scale=0.0 ).images[0] return image, seed examples = [ "breathtaking beautiful young woman, light-blue eyes, long bronze hair, fair complexion, (freckles:0.5) , wearing sexy lace lingerie, sitting on the floor, leaning on her bed, window in the background with sheer white curtains, staring seductively at the viewer, sun shining through the window . award-winning, professional, highly detailed ] css=""" #col-container { background:#181717; padding: 10px; color:#000000: font-weight:600; margin: 10 auto; border: 1px #FFFFFF; border-radius:15px; max-width: 100%; min-width: 600px; border-radius: 15px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""OUR FLUX APP""") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=10, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=True): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=704, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=30, step=1, value=10, ) gr.Examples( examples = examples, fn = infer, inputs = [prompt], outputs = [result, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps], outputs = [result, seed] ) demo.launch()