Spaces:
Runtime error
Runtime error
from deepspeech import Model | |
import gradio as gr | |
import numpy as np | |
import urllib.request | |
model_file_path = "deepspeech-0.9.3-models.pbmm" | |
lm_file_path = "deepspeech-0.9.3-models.scorer" | |
url = "https://github.com/mozilla/DeepSpeech/releases/download/v0.9.3/" | |
urllib.request.urlretrieve(url + model_file_path, filename=model_file_path) | |
urllib.request.urlretrieve(url + lm_file_path, filename=lm_file_path) | |
beam_width = 100 | |
lm_alpha = 0.93 | |
lm_beta = 1.18 | |
model = Model(model_file_path) | |
model.enableExternalScorer(lm_file_path) | |
model.setScorerAlphaBeta(lm_alpha, lm_beta) | |
model.setBeamWidth(beam_width) | |
def reformat_freq(sr, y): | |
if sr not in ( | |
48000, | |
16000, | |
): # Deepspeech only supports 16k, (we convert 48k -> 16k) | |
raise ValueError("Unsupported rate", sr) | |
if sr == 48000: | |
y = ( | |
((y / max(np.max(y), 1)) * 32767) | |
.reshape((-1, 3)) | |
.mean(axis=1) | |
.astype("int16") | |
) | |
sr = 16000 | |
return sr, y | |
def transcribe(audio_file): | |
text = model(audio_file) | |
return text | |
demo = gr.Interface( | |
transcribe, | |
# [gr.Audio(source="microphone", streaming=True), "state"], | |
gr.Audio(label="Upload Audio File", source="upload", type="filepath"), | |
outputs=gr.Textbox(label="Transcript") | |
) | |
if __name__ == "__main__": | |
demo.launch() |