Spaces:
Runtime error
Runtime error
import streamlit as st | |
import torch | |
from diffusers import AudioLDMPipeline | |
from transformers import AutoProcessor, ClapModel | |
st.set_option('browser.gatherUsageStats', False) | |
# make Space compatible with CPU duplicates | |
if torch.cuda.is_available(): | |
device = "cuda" | |
torch_dtype = torch.float16 | |
else: | |
device = "cpu" | |
torch_dtype = torch.float32 | |
# load the diffusers pipeline | |
repo_id = "cvssp/audioldm-m-full" | |
pipe = AudioLDMPipeline.from_pretrained(repo_id, torch_dtype=torch_dtype).to(device) | |
pipe.unet = torch.compile(pipe.unet) | |
# CLAP model (only required for automatic scoring) | |
clap_model = ClapModel.from_pretrained("sanchit-gandhi/clap-htsat-unfused-m-full").to(device) | |
processor = AutoProcessor.from_pretrained("sanchit-gandhi/clap-htsat-unfused-m-full") | |
generator = torch.Generator(device) | |
# Streamlit app setup | |
st.set_page_config( | |
page_title="Text to Music", | |
page_icon="🎵", | |
) | |
text_input = st.text_input("Input text", "A hammer is hitting a wooden surface") | |
negative_prompt = st.text_input("Negative prompt", "low quality, average quality") | |
st.markdown("### Configuration") | |
seed = st.number_input("Seed", value=45) | |
duration = st.slider("Duration (seconds)", 2.5, 10.0, 5.0, 2.5) | |
guidance_scale = st.slider("Guidance scale", 0.0, 4.0, 2.5, 0.5) | |
n_candidates = st.slider("Number waveforms to generate", 1, 3, 3, 1) | |
def score_waveforms(text, waveforms): | |
inputs = processor(text=text, audios=list(waveforms), return_tensors="pt", padding=True) | |
inputs = {key: inputs[key].to(device) for key in inputs} | |
with torch.no_grad(): | |
logits_per_text = clap_model(**inputs).logits_per_text # this is the audio-text similarity score | |
probs = logits_per_text.softmax(dim=-1) # we can take the softmax to get the label probabilities | |
most_probable = torch.argmax(probs) # and now select the most likely audio waveform | |
waveform = waveforms[most_probable] | |
return waveform | |
if st.button("Submit"): | |
if text_input is None: | |
st.error("Please provide a text input.") | |
else: | |
waveforms = pipe( | |
text_input, | |
audio_length_in_s=duration, | |
guidance_scale=guidance_scale, | |
num_inference_steps=100, | |
negative_prompt=negative_prompt, | |
num_waveforms_per_prompt=n_candidates if n_candidates else 1, | |
generator=generator.manual_seed(int(seed)), | |
)["audios"] | |
if waveforms.shape[0] > 1: | |
waveform = score_waveforms(text_input, waveforms) | |
else: | |
waveform = waveforms[0] | |
# Spécifiez le taux d'échantillonnage (sample_rate) et le format audio | |
st.audio(waveform, format="audio/wav", sample_rate=16000) | |
browser.gatherUsageStats = False | |