DanielPFlorian commited on
Commit
0bce035
·
1 Parent(s): bdac169

refactor imports

Browse files
Files changed (1) hide show
  1. app.py +15 -9
app.py CHANGED
@@ -1,4 +1,7 @@
1
- import gradio as gr
 
 
 
2
  from PIL import Image
3
  import numpy as np
4
  import json
@@ -9,6 +12,9 @@ import torch
9
  import matplotlib.pyplot as plt
10
  import matplotlib.ticker as ticker
11
  from huggingface_hub import HfApi
 
 
 
12
 
13
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
14
 
@@ -82,14 +88,14 @@ class Network(nn.Module):
82
 
83
  return F.log_softmax(x, dim=1)
84
 
85
- def process_image(img_path):
86
- """Scales, crops, and normalizes a PIL image for a PyTorch model,
87
- returns a Numpy array
88
 
89
- Arguments
90
- ---------
91
- image: path of the image to be processed
92
- """
93
  inp = Image.open(img_path)
94
  exif = inp.getexif()
95
 
@@ -212,5 +218,5 @@ gr.Interface(
212
  predict,
213
  inputs=gr.inputs.Image(label="Upload a flower image", type="filepath"),
214
  outputs=gr.outputs.Label(num_top_classes=5),
215
- title="What kind of flower is this?",
216
  ).launch()
 
1
+ import os
2
+ import re
3
+ from datetime import datetime
4
+
5
  from PIL import Image
6
  import numpy as np
7
  import json
 
12
  import matplotlib.pyplot as plt
13
  import matplotlib.ticker as ticker
14
  from huggingface_hub import HfApi
15
+ import gradio as gr
16
+
17
+ HF_TOKEN = os.environ.get("HF_TOKEN")
18
 
19
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
20
 
 
88
 
89
  return F.log_softmax(x, dim=1)
90
 
91
+ def process_image(img_path):
92
+ """Scales, crops, and normalizes a PIL image for a PyTorch model,
93
+ returns a Numpy array
94
 
95
+ Arguments
96
+ ---------
97
+ image: path of the image to be processed
98
+ """
99
  inp = Image.open(img_path)
100
  exif = inp.getexif()
101
 
 
218
  predict,
219
  inputs=gr.inputs.Image(label="Upload a flower image", type="filepath"),
220
  outputs=gr.outputs.Label(num_top_classes=5),
221
+ title="What kind of flower is this?"
222
  ).launch()