Spaces:
Sleeping
Sleeping
Commit
·
4d817ae
1
Parent(s):
c342e41
create test app
Browse files
app.py
CHANGED
@@ -1,8 +1,214 @@
|
|
1 |
-
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
import json
|
5 |
+
from torchvision import models
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch import nn
|
8 |
+
import torch
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import matplotlib.ticker as ticker
|
11 |
+
from huggingface_hub import HfApi
|
12 |
+
|
13 |
+
def load_checkpoint(filepath):
|
14 |
+
"""Builds PyTorch Model from saved model
|
15 |
+
Returns built model
|
16 |
+
|
17 |
+
Arguments: string, filepath of saved PyTorch model
|
18 |
+
"""
|
19 |
+
|
20 |
+
# Load pretrained weights
|
21 |
+
weights = "IMAGENET1K_V1"
|
22 |
+
|
23 |
+
# Load model using pretrained weights
|
24 |
+
model = models.maxvit_t(weights=weights)
|
25 |
+
|
26 |
+
# Load checkpoint
|
27 |
+
checkpoint = torch.load(filepath, map_location=torch.device("cpu"))
|
28 |
+
|
29 |
+
# Get new classifier from checkpoint
|
30 |
+
new_classifier = checkpoint["classifier"]
|
31 |
+
|
32 |
+
# Replace pretrained model output classifier layer[5] with newly created classifier
|
33 |
+
model.classifier[5] = new_classifier
|
34 |
+
|
35 |
+
# Load model weights
|
36 |
+
model.load_state_dict(checkpoint["state_dict"])
|
37 |
+
|
38 |
+
# Load class to index mapping
|
39 |
+
model.class_to_idx = checkpoint["class_to_idx"]
|
40 |
+
|
41 |
+
return model
|
42 |
+
|
43 |
+
|
44 |
+
class Network(nn.Module):
|
45 |
+
def __init__(self, input_size, hidden_layers, output_size=102, drop_p=0.2):
|
46 |
+
"""Builds a feedforward network with arbitrary hidden layers.
|
47 |
+
|
48 |
+
Arguments
|
49 |
+
---------
|
50 |
+
input_size: integer, size of the input layer
|
51 |
+
output_size: integer, size of the output layer
|
52 |
+
hidden_layers: list of integers, the sizes of the hidden layers
|
53 |
+
drop_p: float, dropout probability
|
54 |
+
"""
|
55 |
+
super().__init__()
|
56 |
+
|
57 |
+
self.drop_p = drop_p
|
58 |
+
|
59 |
+
# Input to a hidden layer
|
60 |
+
self.hidden_layers = nn.ModuleList([nn.Linear(input_size, hidden_layers[0])])
|
61 |
+
|
62 |
+
# Add a variable number of more hidden layers
|
63 |
+
layer_sizes = zip(hidden_layers[:-1], hidden_layers[1:])
|
64 |
+
self.hidden_layers.extend([nn.Linear(h1, h2) for h1, h2 in layer_sizes])
|
65 |
+
|
66 |
+
self.output = nn.Linear(hidden_layers[-1], output_size)
|
67 |
+
|
68 |
+
print(
|
69 |
+
f"\nNumber of layers: {len(self.hidden_layers)}"
|
70 |
+
f"\nNumber of units in layers:{hidden_layers}"
|
71 |
+
)
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
"""Forward pass through the network, returns the output logits"""
|
75 |
+
|
76 |
+
for each in self.hidden_layers:
|
77 |
+
x = F.relu(each(x))
|
78 |
+
x = F.dropout(x, self.drop_p)
|
79 |
+
x = self.output(x)
|
80 |
+
|
81 |
+
return F.log_softmax(x, dim=1)
|
82 |
+
|
83 |
+
def process_image(img_path):
|
84 |
+
"""Scales, crops, and normalizes a PIL image for a PyTorch model,
|
85 |
+
returns a Numpy array
|
86 |
+
|
87 |
+
Arguments
|
88 |
+
---------
|
89 |
+
image: path of the image to be processed
|
90 |
+
"""
|
91 |
+
inp = Image.open(img_path)
|
92 |
+
exif = inp.getexif()
|
93 |
+
|
94 |
+
# Get image size
|
95 |
+
w, h = inp.size
|
96 |
+
|
97 |
+
# Create inference directory for prediction
|
98 |
+
os.makedirs("inference", exist_ok=True)
|
99 |
+
|
100 |
+
# Remove non alphanumeric characters
|
101 |
+
image_path = re.sub(r"\W+", "", img_path)
|
102 |
+
image_path = str(datetime.now()) + ".png"
|
103 |
+
|
104 |
+
# Join to directory path
|
105 |
+
inf_image = os.path.join("inference", img_path)
|
106 |
+
|
107 |
+
# Use repo for inference
|
108 |
+
inp.save(inf_image, exif=exif)
|
109 |
+
HfApi().upload_file(
|
110 |
+
path_or_fileobj=inf_image,
|
111 |
+
path_in_repo=image_path,
|
112 |
+
repo_id="DanielPFlorian/flower-image-classifier",
|
113 |
+
repo_type="dataset",
|
114 |
+
token=HF_TOKEN,
|
115 |
+
)
|
116 |
+
|
117 |
+
# resize image so shortest side is 256 preserving aspect ratio
|
118 |
+
if w > h:
|
119 |
+
inp.thumbnail((10000, 256))
|
120 |
+
elif h > w:
|
121 |
+
inp.thumbnail((256, 10000))
|
122 |
+
else:
|
123 |
+
inp.thumbnail((256, 256))
|
124 |
+
|
125 |
+
# crop center 224x224
|
126 |
+
w, h = inp.size
|
127 |
+
left = (w - 224) // 2
|
128 |
+
top = (h - 224) // 2
|
129 |
+
right = (w + 224) // 2
|
130 |
+
bottom = (h + 224) // 2
|
131 |
+
image = inp.crop((left, top, right, bottom))
|
132 |
+
|
133 |
+
# Convert pil image to numpy array and scale color channels to [0, 1]
|
134 |
+
np_image = np.array(image) / 255
|
135 |
+
|
136 |
+
# Normalize image
|
137 |
+
mean = np.array([0.485, 0.456, 0.406]) # Mean
|
138 |
+
std = np.array([0.229, 0.224, 0.225]) # Standard deviation
|
139 |
+
np_image = (np_image - mean) / std
|
140 |
+
|
141 |
+
# Move color channels to first dimension
|
142 |
+
np_image = np_image.transpose((2, 0, 1))
|
143 |
+
|
144 |
+
return np_image
|
145 |
+
|
146 |
+
def predict(image_path, model=model, category_names=cat_to_name, topk=5):
|
147 |
+
"""Predict the class (or classes) of an image using a trained deep learning model.
|
148 |
+
Arguments
|
149 |
+
---------
|
150 |
+
image_path: path of the image to be processed
|
151 |
+
model: model to be used for prediction
|
152 |
+
topk: number of top predicted classes to return
|
153 |
+
"""
|
154 |
+
# Process image function
|
155 |
+
image = process_image(image_path)
|
156 |
+
|
157 |
+
# Convert image to float tensor with batch size of 1
|
158 |
+
image = torch.as_tensor(image).view((1, 3, 224, 224)).float()
|
159 |
+
|
160 |
+
# Set model to evaluation mode/ inference mode
|
161 |
+
model.eval()
|
162 |
+
|
163 |
+
# Turn off gradients to speed up this part
|
164 |
+
with torch.no_grad():
|
165 |
+
# Forward Pass. Ouputs log probabilities of classes
|
166 |
+
log_ps = model.forward(image)
|
167 |
+
|
168 |
+
# Exponential of log probabilities for each class
|
169 |
+
ps = torch.exp(log_ps)
|
170 |
+
|
171 |
+
# Get top k predictions. Returns probabilities and class indexes
|
172 |
+
top_probs, idx = ps.topk(topk, dim=1)
|
173 |
+
|
174 |
+
# Convert tensors to lists. Index[0] returns unnested List
|
175 |
+
top_probs, idx = top_probs.tolist()[0], idx.tolist()[0]
|
176 |
+
|
177 |
+
# Convert top_probs to percentages
|
178 |
+
percentages = [round(prob * 100.00, 2) for prob in top_probs]
|
179 |
+
|
180 |
+
# Converts class_labels:indexes to indexes:class_labels
|
181 |
+
idx_to_class = {val: key for key, val in model.class_to_idx.items()}
|
182 |
+
|
183 |
+
# get class labels from indexes
|
184 |
+
top_labels = [idx_to_class[lab] for lab in idx]
|
185 |
+
|
186 |
+
# Get names from labels
|
187 |
+
if category_names:
|
188 |
+
top_labels = [category_names[str(lab)] for lab in top_labels]
|
189 |
+
|
190 |
+
# Plot Functionality
|
191 |
|
192 |
+
image = Image.open(image_path)
|
193 |
+
fig, (ax1, ax2) = plt.subplots(ncols=2)
|
194 |
+
ax1.imshow(image)
|
195 |
+
ax1.axis("off")
|
196 |
+
ax2.barh(np.arange(len(top_labels)), percentages)
|
197 |
+
asp = np.diff(ax2.get_xlim())[0] / np.diff(ax2.get_ylim())[0]
|
198 |
+
ax2.set_aspect(asp)
|
199 |
+
ax2.set_yticks(np.arange(len(top_labels)))
|
200 |
+
ax2.set_yticklabels(top_labels)
|
201 |
+
ax2.invert_yaxis()
|
202 |
+
ax2.xaxis.set_major_formatter(ticker.PercentFormatter())
|
203 |
+
plt.tight_layout()
|
204 |
+
ax2.set_title("Class Probability")
|
205 |
+
plt.show()
|
206 |
|
207 |
+
return fig
|
208 |
+
|
209 |
+
gr.Interface(
|
210 |
+
predict,
|
211 |
+
inputs=gr.inputs.Image(label="Upload a flower image", type="filepath"),
|
212 |
+
outputs=gr.outputs.Label(num_top_classes=5),
|
213 |
+
title="What kind of flower is this?",
|
214 |
+
).launch()
|