import os import re from datetime import datetime from PIL import Image import numpy as np import json from torchvision import models import torch.nn.functional as F from torch import nn import torch import matplotlib.pyplot as plt import matplotlib.ticker as ticker from huggingface_hub import HfApi import gradio as gr HF_TOKEN = os.environ.get("HF_TOKEN") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def load_checkpoint(filepath): """Builds PyTorch Model from saved model Returns built model Arguments: string, filepath of saved PyTorch model """ # Load pretrained weights weights = "IMAGENET1K_V1" # Load model using pretrained weights model = models.maxvit_t(weights=weights) # Load checkpoint checkpoint = torch.load(filepath, map_location=torch.device("cpu")) # Get new classifier from checkpoint new_classifier = checkpoint["classifier"] # Replace pretrained model output classifier layer[5] with newly created classifier model.classifier[5] = new_classifier # Load model weights model.load_state_dict(checkpoint["state_dict"]) # Load class to index mapping model.class_to_idx = checkpoint["class_to_idx"] return model class Network(nn.Module): def __init__(self, input_size, hidden_layers, output_size=102, drop_p=0.2): """Builds a feedforward network with arbitrary hidden layers. Arguments --------- input_size: integer, size of the input layer output_size: integer, size of the output layer hidden_layers: list of integers, the sizes of the hidden layers drop_p: float, dropout probability """ super().__init__() self.drop_p = drop_p # Input to a hidden layer self.hidden_layers = nn.ModuleList([nn.Linear(input_size, hidden_layers[0])]) # Add a variable number of more hidden layers layer_sizes = zip(hidden_layers[:-1], hidden_layers[1:]) self.hidden_layers.extend([nn.Linear(h1, h2) for h1, h2 in layer_sizes]) self.output = nn.Linear(hidden_layers[-1], output_size) print( f"\nNumber of layers: {len(self.hidden_layers)}" f"\nNumber of units in layers:{hidden_layers}" ) def forward(self, x): """Forward pass through the network, returns the output logits""" for each in self.hidden_layers: x = F.relu(each(x)) x = F.dropout(x, self.drop_p) x = self.output(x) return F.log_softmax(x, dim=1) model = load_checkpoint("flower_inference_model.pth") def process_image(pil_image): """Scales, crops, and normalizes a PIL image for a PyTorch model, returns a Numpy array Arguments --------- image: path of the image to be processed """ inp = pil_image img_exif = inp.getexif() # Get image size w, h = inp.size # Create inference directory for prediction os.makedirs("inference", exist_ok=True) # Remove non alphanumeric characters image_path = str(datetime.now()) image_path = re.sub(r"\W+", "_", image_path) # Join to directory path inf_image = os.path.join("inference", image_path + ".jpg") # Use repo for inference inp.save(inf_image, quality=95, keep=True, exif=img_exif) HfApi().upload_file( path_or_fileobj=inf_image, path_in_repo=image_path, repo_id="DanielPFlorian/flower-image-classifier", repo_type="dataset", token=HF_TOKEN, ) # resize image so shortest side is 256 preserving aspect ratio if w > h: inp.thumbnail((10000, 256)) elif h > w: inp.thumbnail((256, 10000)) else: inp.thumbnail((256, 256)) # crop center 224x224 w, h = inp.size left = (w - 224) // 2 top = (h - 224) // 2 right = (w + 224) // 2 bottom = (h + 224) // 2 image = inp.crop((left, top, right, bottom)) # Convert pil image to numpy array and scale color channels to [0, 1] np_image = np.array(image) / 255 # Normalize image mean = np.array([0.485, 0.456, 0.406]) # Mean std = np.array([0.229, 0.224, 0.225]) # Standard deviation np_image = (np_image - mean) / std # Move color channels to first dimension np_image = np_image.transpose((2, 0, 1)) return np_image # Category to name mapping with open("cat_to_name.json", "r") as f: cat_to_name = json.load(f) def predict(pil_image, model=model, category_names=cat_to_name, topk=5): """Predict the class (or classes) of an image using a trained deep learning model. Arguments --------- image_path: path of the image to be processed model: model to be used for prediction topk: number of top predicted classes to return """ # Process image function image = process_image(pil_image) # Convert image to float tensor with batch size of 1 image = torch.as_tensor(image).view((1, 3, 224, 224)).float() # Set model to evaluation mode/ inference mode model.eval() # Turn off gradients to speed up this part with torch.no_grad(): # Forward Pass. Ouputs log probabilities of classes log_ps = model.forward(image) # Exponential of log probabilities for each class ps = torch.exp(log_ps) # Get top k predictions. Returns probabilities and class indexes top_probs, idx = ps.topk(topk, dim=1) # Convert tensors to lists. Index[0] returns unnested List top_probs, idx = top_probs.tolist()[0], idx.tolist()[0] # Convert top_probs to percentages percentages = [round(prob * 100.00, 2) for prob in top_probs] # Converts class_labels:indexes to indexes:class_labels idx_to_class = {val: key for key, val in model.class_to_idx.items()} # get class labels from indexes top_labels = [idx_to_class[lab] for lab in idx] # Get names from labels if category_names: top_labels = [category_names[str(lab)] for lab in top_labels] # Plot Functionality image = pil_image fig, (ax1, ax2) = plt.subplots(ncols=2) ax1.imshow(image) ax1.axis("off") ax2.barh(np.arange(len(top_labels)), percentages) asp = np.diff(ax2.get_xlim())[0] / np.diff(ax2.get_ylim())[0] ax2.set_aspect(asp) ax2.set_yticks(np.arange(len(top_labels))) ax2.set_yticklabels(top_labels) ax2.invert_yaxis() ax2.xaxis.set_major_formatter(ticker.PercentFormatter()) plt.tight_layout() ax2.set_title("Class Probability") plt.show() return fig # Gradio Interface# Gradio Interface gr.Interface( predict, inputs=gr.Image(type="pil", label="Upload a flower image"), outputs=gr.Plot(label="Plot"), title="What kind of flower is this?", ).launch()